Машинное обучение. Домашнее задание №5

Задача 1. Пусть подвыборка \tilde{X}^ℓ генерируется с помощью бустрэппинга из выборки X^ℓ размера ℓ . Найдите вероятность того, что фиксированный объект $x \in X^\ell$ попадет в подвыборку \tilde{X}^ℓ . Чему равна эта вероятность, если $\ell \to \infty$?

Задача 2. Известно, что бэггинг плохо работает, если в качестве базовых классификаторов взять методы ближайшего соседа. Попробуем понять причины на простом примере.

Пусть дана выборка X^{ℓ} из ℓ объектов с ответами из множества $\mathbb{Y} = \{-1, +1\}$. Будем рассматривать классификатор одного ближайшего соседа в качестве базового алгоритма. Построим с помощью бэггинга композицию длины N:

$$a_N(x) = \operatorname{sign} \sum_{n=1}^N b_n(x).$$

Оцените вероятность того, что ответ композиции на произвольном объекте x будет отличаться от ответа одного классификатора ближайшего соседа, обученного по всей выборке. Покажите, что эта вероятность стремится к нулю при $N \to \infty$.

 Π одсказка: ответ композиции на x может отличаться от ответа одного алгоритма только в том случае, если ближайший сосед x попал в обучение для менее чем половины базовых алгоритмов.

Задача 3. Пусть x_1, \ldots, x_N — одинаково распределенные случайные величины с дисперсией σ^2 . Если они независимы, то дисперсия их среднего равна σ^2/N . По-кажите, что если корреляция между любой парой этих величин равна $\rho>0$, то дисперсия среднего вычисляется по формуле

$$\mathbb{D}\left[\frac{1}{N}\sum_{n=1}^{N}x_n\right] = \rho\sigma^2 + \frac{1-\rho}{N}\sigma^2.$$