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Abstract. We present a unified approach to an important subclass of Bonferroni-type
inequalities by considering so-called binomially bounded functions. Our main result
associates with each binomially bounded function a Bonferroni-type inequality. By ap-
propriately choosing this function, several well-known and new results are deduced.

1. Introduction

Let Av, v ∈ V , be finitely many events in some probability space (Ω, A, P ). The
classical Bonferroni inequalities state that for any r ∈ N0,

(1.1) (−1)rP

( ⋃
v∈V

Av

)
≥ (−1)r

∑
I⊆V

0<|I|≤r

(−1)|I|−1P

(⋂
i∈I

Ai

)

where N0 := {0, 1, 2, . . . }. There are a lot of improvements and applications of these
inequalities, see e.g., [3] for a detailed survey and [1] for some recent developments.

In this paper, we establish a new improvement of the classical Bonferroni inequalities by
introducing an additional term on the right-hand side of (1.1), which involves the (r +1)-
subsets of V and a so-called binomially bounded function. By choosing this function
appropriately, several well-known and new results are obtained in a unified way.

2. Binomially bounded functions

The concept of a binomially bounded function arose from the proof of our main result
and its consequences in Section 3.

Definition 2.1. For any finite set V and any k ∈ N we use [V ]k to denote the set of
k-subsets of V . A function f : [V ]k → R is called binomially bounded if

(2.1)
∑
I⊆W
|I|=k

f(I) ≤
(
|W | − 1

k − 1

)
for any non-empty subset W of V .

Remark 2.1. As an immediate consequence of the preceding definition we observe that
any binomially bounded function f : [V ]k → R satisfies f(I) ≤ 1 for any I ∈ [V ]k.

A huge class of binomially bounded functions is identified in the following proposition.

Proposition 2.1. Let V be a finite set, and let pv, v ∈ V , be non-negative reals such that∑
v∈V pv ≤ 1. Then, for any k ∈ N the function f : [V ]k → R which is defined by

f(I) :=
∑
i∈I

pi

is binomially bounded.
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Proof. For any non-empty subset W of V we find that∑
I⊆W
|I|=k

f(I) =
∑
I⊆W
|I|=k

∑
i∈I

pi =
∑
i∈W

pi

∑
I⊆W
|I|=k
i∈I

1 =
∑
i∈W

pi

(
|W | − 1

k − 1

)
≤
(
|W | − 1

k − 1

)
,

which proves the statement. �

Example 2.1. Let V be a non-empty finite set and k ∈ N. By putting pv := 1/|V | for any
v ∈ V in the preceding proposition we observe that the function f : [V ]k → R, which is
defined by f(I) := |I|/|V | for any I ∈ [V ]k, is binomially bounded.

Example 2.2. Let G = (V, E) be a tree. For any two-element subset I of V define f(I) := 1
if I is an edge of G, and f(I) := 0 otherwise. Then, for any non-empty subset W of V ,

(2.2)
∑
I⊆W
|I|=2

f(I) = m(G[W ]) ≤ |W | − 1 ,

where m(G[W ]) denotes the number of edges in the vertex-induced subgraph G[W ]. The
inequality in (2.2) holds since G[W ] is a tree, and since the number of edges in any tree
equals the number of its vertices minus 1. By (2.2), f : [V ]2 → R is binomially bounded.

3. Main result and consequences

We are now ready to state our main result.

Theorem 3.1. Let Av, v ∈ V , be finitely many events in some probability space (Ω, A, P ).
Then, for any r ∈ N0 and any binomially bounded function f : [V ]r+1 → R we have

(3.1) (−1)rP

( ⋃
v∈V

Av

)
≥ (−1)r

∑
I⊆V

0<|I|≤r

(−1)|I|−1P

(⋂
i∈I

Ai

)
+
∑
I⊆V

|I|=r+1

P

(⋂
i∈I

Ai

)
f(I) .

The proof of Theorem 3.1 makes use of the following simple lemma.

Lemma 3.2. For any non-empty finite set V and any r ∈ N0,∑
I⊆V
|I|≤r

(−1)|I| = (−1)r

(
|V | − 1

r

)
.

Proof. This follows from the well-known combinatorial identity
r∑

k=0

(−1)k

(
m

k

)
= (−1)r

(
m− 1

r

)
(m ∈ N, r ∈ N0),

which can easily be proved by the WZ method. �

Proof of Theorem 3.1. By the method of indicators [3] it suffices to prove that

(3.2) (−1)r1S
v∈V Av ≥ (−1)r

∑
I⊆V

0<|I|≤r

(−1)|I|−11T
i∈I Ai

+
∑
I⊆V

|I|=r+1

1T
i∈I Ai

f(I)

where 1A denotes the indicator function of A. In order to prove (3.2) it suffices to show
that for any ω ∈

⋃
v∈V Av,

(3.3) (−1)r ≥ (−1)r
∑
I⊆Vω

0<|I|≤r

(−1)|I|−1 +
∑
I⊆Vω
|I|=r+1

f(I)
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where Vω := {v ∈ V |ω ∈ Av}. By the requirement on f and Lemma 3.2 we find that∑
I⊆Vω
|I|=r+1

f(I) ≤
(
|Vω| − 1

r

)
= (−1)r

∑
I⊆Vω
|I|≤r

(−1)|I| = (−1)r − (−1)r
∑
I⊆Vω

0<|I|≤r

(−1)|I|−1 .

which establishes (3.3). Thus, the proof of the theorem is complete. �

Remark 3.1. In view of the preceding proof it should be obvious that Theorem 3.1 (as
well as its subsequent corollaries) remains valid if P is replaced by some arbitrary finite
measure µ (e.g., the counting measure) on the algebra generated by the sets Av, v ∈ V .

Theorem 3.1 offers some freedom in choosing the function f : [V ]r+1 → R. As shown
below, by choosing this function appropriately, some known and new results on Bonferroni-
type inequalities can be obtained in a concise and unified way. We start with deducing
Galambos’ inequality [2], which for r = 1 specializes to Kwerel’s inequality [7].

Corollary 3.3. [2] Let Av, v ∈ V , be events in some probability space (Ω, A, P ), where
V is assumed to be finite and non-empty. Then, for any r ∈ N0 we have

(3.4) (−1)rP

( ⋃
v∈V

Av

)
≥ (−1)r

∑
I⊆V

0<|I|≤r

(−1)|I|−1P

(⋂
i∈I

Ai

)
+

r + 1

|V |
∑
I⊆V

|I|=r+1

P

(⋂
i∈I

Ai

)
.

Proof. Corollary 3.3 follows from Theorem 3.1 by considering the binomially bounded
function of Example 2.1. �

The following inequality seems to be new even in the particular case r = 1. It agrees
with Galambos’ inequality of Corollary 3.3 if all probabilities P (Av), v ∈ V , are equal, or
if all probabilities P

(⋂
i∈I Ai

)
are equal for all subsets I ⊆ V satisfying |I| = r + 1.

Corollary 3.4. If, in addition to the requirements of Corollary 3.3, P (Av) > 0 for at
least one v ∈ V , then

(3.5) (−1)rP

( ⋃
v∈V

Av

)
≥ (−1)r

∑
I⊆V

0<|I|≤r

(−1)|I|−1P

(⋂
i∈I

Ai

)

+
∑
I⊆V

|I|=r+1

P

(⋂
i∈I

Ai

)∑
i∈I

P (Ai)
/∑

v∈V

P (Av).

Proof. Define pi := P (Ai)/
∑

v∈V P (Av) for any i ∈ V . Then, by Proposition 2.1 it follows
that the function f : [V ]r+1 → R, which is defined by f(I) :=

∑
i∈I P (Ai)/

∑
v∈V P (Av)

for any I ∈ [V ]r+1, is binomially bounded. The result now follows from Theorem 3.1. �

Our next corollary generalizes a result due to Kounias [6], which is obtained by consid-
ering the particular case r = 1.

Corollary 3.5. Under the requirements of Corollary 3.3,

(3.6) (−1)rP

( ⋃
v∈V

Av

)
≥ (−1)r

∑
I⊆V

0<|I|≤r

(−1)|I|−1P

(⋂
i∈I

Ai

)
+ max

j∈V

∑
I⊆V

|I|=r+1
j∈I

P

(⋂
i∈I

Ai

)
.
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Proof. Fix some j ∈ V and define pi := δij for any i ∈ V , where δ is the usual Kronecker
delta. Then, by applying Proposition 2.1 it follows that the function f : [V ]r+1 → R,
which is defined by f(I) :=

∑
i∈I pi for any I ∈ [V ]r+1, is binomially bounded. Note that

f(I) = 1 if j ∈ I, and f(I) = 0 if j /∈ I. Thus, by applying Theorem 3.1 we obtain

(−1)rP

( ⋃
v∈V

Av

)
≥ (−1)r

∑
I⊆V

0<|I|≤r

(−1)|I|−1P

(⋂
i∈I

Ai

)
+
∑
I⊆V

|I|=r+1
j∈I

P

(⋂
i∈I

Ai

)
.

The result now follows by taking the maximum of the right-hand side over all j ∈ V . �

In our next corollary, we rediscover a prominent result due to Hunter [5] and Worsley [9].

Corollary 3.6. [5, 9] Let Av, v ∈ V , be events in some probability space (Ω, A, P ). Then,
for any tree G = (V, E) on the index-set of these events the following inequality holds:

(3.7) P

( ⋃
v∈V

Av

)
≤
∑
v∈V

P (Av) −
∑

{i,j}∈E

P (Ai ∩ Aj) .

Proof. Corollary 3.6 follows from Theorem 3.1 by considering the binomially bounded
function of Example 2.2. �

The Hunter-Worsley bound of Corollary 3.6 has been generalized from trees to hy-
pertrees by Tomescu [8], and then from hypertrees to sparse uniform hypergraphs by
Grable [4]. A quite different generalization to chordal graphs can be found in [1].

Recall that a hypergraph H = (V, E) is called k-uniform if each edge E ∈ E consists
of exactly k vertices. A k-uniform hypergraph H = (V, E) is called sparse if for any non-

empty subset W of V the induced subhypergraph H[W ] := (W, E∩2W ) has at most
(|W |−1

k−1

)
edges. As a final consequence of our main result, we now deduce Grable’s inequality.

Corollary 3.7. [4] Let Av, v ∈ V , be events in some probability space (Ω, A, P ). Then,
for any r ∈ N0 and any sparse (r + 1)-uniform hypergraph H = (V, E) on the index-set of
these events the following inequality holds:

(3.8) (−1)rP

( ⋃
v∈V

Av

)
≥ (−1)r

∑
I⊆V

0<|I|≤r

(−1)|I|−1P

(⋂
i∈I

Ai

)
+
∑
I∈E

P

(⋂
i∈I

Ai

)
.

Proof. For any (r + 1)-element subset I of V define f(I) := 1 if I is an edge of H, and
f(I) := 0 otherwise. Then, since H is a sparse (r + 1)-uniform hypergraph,

(3.9)
∑
I⊆W

|I|=r+1

f(I) = m(H[W ]) ≤
(
|W | − 1

r

)
for any non-empty subset W of V , where m(H[W ]) denotes the number of edges in H[W ].
By (3.9), f is binomially bounded. The result now follows by applying Theorem 3.1. �

Remark 3.2. Although, as we saw in the proof of the preceding corollary, any sparse
uniform hypergraph gives rise to a binomially bounded function, the two concepts are
not equivalent. There are binomially bounded functions (e.g., those in the proofs of
Corollaries 3.3 and 3.4) to which no sparse uniform hypergraph corresponds. In view of
Grable’s inequality and our main result it should be clear, however, that sparse uniform
hypergraphs are in fact equivalent to 0,1-valued binomially bounded functions.
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