Выбор функций потерь в задачах неотрицательного матричного разложения

Рябенко Евгений Алексеевич

Диссертация на соискание учёной степени кандидата физико-математических наук 05.13.18 — математическое моделирование, численные методы и комплексы программ

Научный руководитель — д.ф.-м.н. К.В. Воронцов

ВЦ РАН, 30 октября 2014 г.

Неотрицательное матричное разложение

Дано: матрица
$$P \in \mathbb{R}^{m imes n}_+$$
, число $r < \min\left(m,n
ight)$.

Найти: матрицы $A \in \mathbb{R}^{m imes r}_+$, $X \in \mathbb{R}^{r imes n}_+$ такие, что

$$P \approx AX \equiv Q.$$

Оптимизационная задача:

$$(A^*, X^*) = \operatorname*{argmin}_{A \ge 0, \ X \ge 0} D(P, AX).$$

Дивергенция — неотрицательная сепарабельная функция потерь с единственным нулём:

$$D(P,Q) = \sum_{i=1}^{m} \sum_{j=1}^{n} d(p_{ij}, q_{ij}),$$
$$d(p,q) \ge 0,$$
$$d(p,q) = 0 \Leftrightarrow p = q.$$

Примеры прикладных задач

Рекомендательные системы

$$R_{iu} = \sum_{t} p_{it} q_{tu}$$

дано: R_{iu} — рейтинги товаров *i*, поставленные пользователем *u*;

найти: p_{it} — профиль интересов товара i;

*q*_{tu} — профиль интересов пользователя *u*.

Тематическое моделирование текстовых коллекций

$$f_{wd} = \sum_{t} \phi_{wt} \theta_{td}$$

дано: f_{wd} — частоты слов w в документах d; **найти**: ϕ_{wt} — распределения слов w в темах t; θ_{td} — распределения тем t в документах d.

О Анализ данных ДНК-микрочипов

$$I_{pk} = \sum_{g} a_{pg} c_{gk}$$

дано: I_{pk} — интенсивность флуоресценции p-й пробы на k-м чипе; найти: a_{pg} — коэффициент сродства p-й пробы g-му гену; c_{gk} — уровень экспрессии g-го гена на k-м чипе.

Разновидности дивергенций

$$D\left(P,Q\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} d\left(p_{ij}, q_{ij}\right), \ d\left(p,q\right) \ge 0, \ d\left(p,q\right) = 0 \Leftrightarrow p = q.$$

Дивергенция	$d\left(p,q ight)$
норма l_1	$d_1\left(p,q\right) = \left p-q\right $
квадрат нормы Фробениуса	$d_F(p,q) = (p-q)^2$
дивергенция Кульбака-Лейблера	$d_{KL}\left(p,q\right) = p\ln\frac{p}{q} - p + q$
дивергенция Итакура-Саито	$d_{IS}\left(p,q\right) = \ln \frac{q}{p} + \frac{p}{q} - 1$
расстояние Хеллингера	$d_H(p,q) = \left(\sqrt{p} - \sqrt{q}\right)^2$
χ^2 Пирсона	$d_P(p,q) = \frac{(p-q)^2}{q}$
χ^2 Неймана	$d_N(p,q) = d_P(q,p) = \frac{(p-q)^2}{p}$

Минимизация некоторых дивергенций эквивалентна максимизации правдоподобия в известных параметрических моделях:

Дивергенция	Модель шума	$p\left(P ight)$
Фробениуса	аддитивная гауссовская	$\prod N\left(p_{ij},\sigma^2\right)$
Кульбака-Лейблера	пуассоновская	$\prod_{ij}^{ij} P\left(p_{ij}\right)$
Итакура-Саито	мультипликативная гамма	$\prod_{ij}^{ij} G\left(p_{ij}, \alpha/q_{ij}\right)$

Различные дивергенции оптимальны для разных моделей шума.

Семейство АБ-дивергенций

АБ-дивергенция [Cichocki, 2011]:

$$d_{AB}^{(\alpha,\beta)}\left(p,q\right) = \begin{cases} \frac{1}{\alpha\beta} \left(\frac{\alpha}{\alpha+\beta}p^{\alpha+\beta} + \frac{\beta}{\alpha+\beta}q^{\alpha+\beta} - p^{\alpha}q^{\beta}\right), & \alpha, \beta, \alpha+\beta \neq 0, \\ \frac{1}{\alpha^{2}} \left(p^{\alpha} \ln \frac{p^{\alpha}}{q^{\alpha}} - p^{\alpha} + q^{\alpha}\right), & \alpha \neq 0, \beta = 0, \\ \frac{1}{\alpha^{2}} \left(\ln \frac{q^{\alpha}}{p^{\alpha}} + \left(\frac{q^{\alpha}}{p^{\alpha}}\right)^{-1} - 1\right), & \alpha = -\beta \neq 0, \\ \frac{1}{\beta^{2}} \left(q^{\beta} \ln \frac{q^{\beta}}{p^{\beta}} - q^{\beta} + p^{\beta}\right), & \alpha = 0, \beta \neq 0, \\ \frac{1}{2} (\ln p - \ln q)^{2}, & \alpha = \beta = 0. \end{cases}$$

 α регулирует разреженность модели,

 β определяет соотношение между эффективностью и устойчивостью получаемых оценок.

Идея работы: когда модель шума неизвестна, задачу выбора оптимальной функции потерь можно свести к выбору параметров в семействе АБдивергенций.

Задача оптимизации гиперпараметров α и β

Пусть существует семейство плотностей $p\left(P, \alpha, \beta\right)$ вида

$$p(P, \alpha, \beta) = \frac{1}{Z(\alpha, \beta)} p_0(P, \alpha, \beta),$$

$$p_0(P, \alpha, \beta) = e^{-D_{AB}^{(\alpha, \beta)}(P, Q(P))} = \prod_{i,j} e^{-d_{AB}^{(\alpha, \beta)}(p_{ij}, q_{ij})},$$

$$Z(\alpha, \beta) = \int_X p_0(X, \alpha, \beta) \, dX.$$
(1)

Тогда оценка максимального правдоподобия для lpha и eta имеет вид

$$(\alpha^{*},\beta^{*}) = \operatorname*{argmax}_{\alpha,\beta} \sum_{i,j} \ln p\left(p_{ij},\alpha,\beta\right).$$

Проблема: нормировочный множитель $Z(\alpha, \beta)$ не выражается аналитически или даже не существует (интеграл расходится).

Метод согласования вклада (score matching)

Поскольку нормировочный множитель $Z(\alpha,\beta)$ неизвестен, вместо метода максимизации правдоподобия можно использовать метод согласования вклада [Hyvärinen, 2006, 2007].

Пусть $p_T(x)$ — истинная плотность распределения данных, $p(x, \theta)$ — модельное семейство плотностей.

ОМП (оценка максимума правдоподобия):

$$\theta^{*} = \underset{\theta}{\operatorname{argmin}} \int_{x} p_{T}(x) \ln \frac{p_{T}(x)}{p(x,\theta)} dx.$$

ОСВ (оценка согласования вклада):

$$\theta^{*} = \underset{\theta}{\operatorname{argmin}} \int_{x} p_{T}\left(x\right) \left\| \nabla_{x} \ln \frac{p_{T}\left(x\right)}{p\left(x,\theta\right)} \right\|^{2} dx.$$

 $abla_x \ln p\left(x, \theta\right) =
abla_x \ln p_0\left(x, \theta\right) \Longrightarrow$

согласование вклада можно использовать, не зная $Z(\alpha, \beta)$. Более того, не обязательно даже, чтобы он существовал [Hyvärinen, 2008].

Метод оптимизации гиперпараметров α и β

Теорема

$$\begin{split} B \text{ модели (1) ОСВ принимает следующий вид:} \\ (\alpha^*, \beta^*) &= \operatorname*{argmin}_{\alpha, \beta} J\left(P, \alpha, \beta\right), \\ J\left(P, \alpha, \beta\right) &= \begin{cases} \frac{1}{\beta} \sum_{i,j} p_{ij}^{\alpha} \left(\frac{1}{2\beta} p_{ij}^{\alpha} \left(p_{ij}^{\beta} - q_{ij}^{\beta}\right)^2 - p_{ij}^{\beta} \left(\alpha + \beta + 1\right) + q_{ij}^{\beta} \left(\alpha + 1\right)\right), \\ \beta \neq 0, \\ \sum_{i,j} p_{ij}^{\alpha} \left(\ln \frac{q_{ij}}{p_{ij}} \left(\frac{p_{ij}^{\alpha}}{2} \ln \frac{q_{ij}}{p_{ij}} + \alpha + 1\right) - 1\right), \\ \beta &= 0. \end{cases} \end{split}$$

Оптимальные значения α и β предлагается находить, численно решая приведённую задачу минимизации.

Задача неотрицательного матричного разложения с фиксированной функцией потерь

Оптимизационная задача в общем виде:

$$(A^*, X^*) = \underset{A \ge 0, X \ge 0}{\operatorname{argmin}} D(P, AX).$$

 $D\left(P,AX
ight)$ не выпукла по совокупности аргументов, поэтому используются блочно-покоординатные методы минимизации:

Вход: матрица P, ранг разложения r; Выход: матрицы-множители A и X; 1 инициализация $A^0 \ge 0, X^0 \ge 0$; 2 для всех итераций t = 1, 2, ...3 $X^t = f(P, A^{t-1}, X^{t-1});$ 4 $(A^t)^T = f(P^T, (X^t)^T, (A^{t-1})^T).$

Чаще всего используются мультипликативные алгоритмы, позволяющие естественным образом сохранять неотрицательность элементов матриц.

Неотрицательное матричное разложение

Анализ данных ДНК-микрочипов

Задача неотрицательного матричного разложения с фиксированной АБ-дивергенцией

Оптимизационная задача для АБ-дивергенции:

$$(A^*, X^*) = \operatorname*{argmin}_{A \ge 0, \ X \ge 0} D_{AB}^{(\alpha, \beta)}(P, AX) \,. \tag{2}$$

Мультипликативный алгоритм для АБ-дивергенции [Cichocki, 2011]:

$$\begin{aligned} X \leftarrow X \otimes \left(\left(A^T \left(P^{[\alpha]} \otimes Q^{[\beta-1]} \right) \right) \oslash \left(A^T Q^{[\alpha+\beta-1]} \right) \right)^{[\omega(\alpha,\beta)]}, \\ A \leftarrow A \otimes \left(\left(\left(\left(P^{[\alpha]} \otimes Q^{[\beta-1]} \right) X^T \right) \oslash \left(Q^{[\alpha+\beta-1]} X^T \right) \right)^{[\omega(\alpha,\beta)]}, \\ \omega\left(\alpha,\beta\right) = \begin{cases} \frac{1}{1-\beta}, & \frac{\beta}{\alpha} < \frac{1}{\alpha} - 1, \\ \frac{1}{\alpha}, & \frac{\beta}{\alpha} \in \left[\frac{1}{\alpha} - 1, \frac{1}{\alpha} \right], \\ \frac{1}{\alpha+\beta-1}, & \frac{\beta}{\alpha} > \frac{1}{\alpha}. \end{cases} \end{aligned}$$

 \otimes — поэлементное умножение матриц, \oslash — поэлементное деление, $Z^{[z]}$ — поэлементное возведение матрицы Z в степень z.

Правая часть — глобальный минимум квадратичной функции, мажорирующей $D_{AB}^{(\alpha,\beta)}$ на текущей итерации; следовательно, в ходе обновлений функция потерь монотонно невозрастает.

Сходимость мультипликативного алгоритма

Поскольку задача не является выпуклой, лучшее, что можно гарантировать — сходимость к стационарной точке, задаваемой условиями Каруша-Куна-Таккера:

$$\begin{cases} X^* \ge 0, \\ \nabla_X D_{AB}^{(\alpha,\beta)} \left(P, A^* X^* \right) \ge 0, \\ X^* \otimes \nabla_X D_{AB}^{(\alpha,\beta)} \left(P, A^* X^* \right) \ge 0, \\ A^* \ge 0, \\ \nabla_A D_{AB}^{(\alpha,\beta)} \left(P, A^* X^* \right) \ge 0, \\ A^* \otimes \nabla_A D_{AB}^{(\alpha,\beta)} \left(P, A^* X^* \right) \ge 0. \end{cases}$$

Проблема: обновления мультипликативного алгоритма могут останавливаться в нестационарных точках вблизи нулей: если $x_{kj} = 0$, то он останется равным нулю, даже если $\left[\nabla_X D_{AB}^{(\alpha,\beta)} \right]_{kj} < 0.$

ε -модификация мультипликативного алгоритма

Отделим A и X от нуля небольшой положительной константой ε :

$$X \leftarrow \max\left(\varepsilon, X \otimes \left(\left(A^{T}\left(P^{[\alpha]} \otimes Q^{[\beta-1]}\right)\right) \oslash \left(A^{T}Q^{[\alpha+\beta-1]}\right)\right)^{[\omega(\alpha,\beta)]}\right), \\ A \leftarrow \max\left(\varepsilon, A \otimes \left(\left(\left(P^{[\alpha]} \otimes Q^{[\beta-1]}\right)X^{T}\right) \oslash \left(Q^{[\alpha+\beta-1]}X^{T}\right)\right)^{[\omega(\alpha,\beta)]}\right).$$
(3)

Теорема

При любом $\varepsilon > 0$ функция $D_{AB}^{(\alpha,\beta)}(P,AX)$ монотонно невозрастает при обновлениях (3) для любого начального приближения $A^0 \ge \varepsilon$, $X^0 \ge \varepsilon$.

Теорема

Алгоритм с обновлениями (3) для любого начального приближения $A^0 \geqslant \varepsilon$, $X^0 \geqslant \varepsilon$ сходится к стационарной точке отделённой от нуля задачи

$$(A_{\varepsilon}^{*}, X_{\varepsilon}^{*}) = \operatorname{argmin}_{A \geqslant \varepsilon, X \geqslant \varepsilon} D_{AB}^{(\alpha, \beta)} \left(P, AX \right).$$

Неотрицательное матричное разложение

Анализ данных ДНК-микрочипов

Метод ε -прореживания матриц A_{ε}^* и X_{ε}^*

Получив решение отделённой от нуля задачи, проредим его, обнулив элементы, равные ε :

$$X = X_{\varepsilon}^* \otimes [X_{\varepsilon}^* > \varepsilon],$$

$$A = A_{\varepsilon}^* \otimes [A_{\varepsilon}^* > \varepsilon].$$

Теорема

Для матриц (A,X), полученных из $(A^*_\varepsilon,X^*_\varepsilon)$ ε -прореживанием, верно следующее: $\forall\ i,k,j$

$$\begin{cases}
\begin{bmatrix}
a_{ik} = 0, & [\nabla_A D_{AB}]_{ik} \ge -\mathcal{O}(\varepsilon), \\
a_{ik} > 0, & \left| [\nabla_A D_{AB}]_{ik} \right| \le \mathcal{O}(\varepsilon), \\
\begin{bmatrix}
x_{kj} = 0, & [\nabla_X D_{AB}]_{kj} \ge -\mathcal{O}(\varepsilon), \\
x_{kj} > 0, & \left| [\nabla_X D_{AB}]_{kj} \right| \le \mathcal{O}(\varepsilon),
\end{bmatrix}$$

то есть, в точке (A, X) условия стационарности исходной задачи (2) выполняются с точностью до $\mathcal{O}(\varepsilon)$.

Результаты

- Для задачи неотрицательного матричного разложения предложен способ выбора оптимальной функции потерь в семействе АБ-дивергенций, основанный на методе согласования вклада.
- Предложен є-модифицированный мультипликативный алгоритм неотрицательного матричного разложения с АБ-дивергенцией. Показано, что:
 - в ходе его применения функция потерь монотонно невозрастает;
 - алгоритм глобально сходится к стационарной точке оптимизационной задачи, отделённой от нуля;
 - модификация решения, полученная ε -прореживанием, даёт точку, условия стационарности исходной задачи в которой выполняются с точностью до $\mathcal{O}(\varepsilon)$.

Практическая часть работы

Разработанные методы неотрицательного матричного разложения были применены к задаче анализа данных ДНК-микрочипов.

- Предложен ряд моделей, основанных на неотрицательном матричном разложении и учитывающих особенности данных, игнорируемые стандартными методами анализа.
- Создан программный комплекс, представляющий собой библиотеку модулей и средств визуализации для адаптивного неотрицательного матричного разложения, настройки предложенных моделей и анализа микрочиповых экспериментов.

Особенности задачи анализа данных ДНК-микрочипов

ДНК-микрочип — устройство, позволяющее оценивать экспрессию десятков тысяч генов одновременно.

Экспрессия каждого гена оценивается с помощью десятков флуоресцирующих сенсоров — **проб**.

Проблема: систематические различия между показаниями проб одного и того же гена, вызванные их физическими свойствами:

Особенности задачи анализа данных ДНК-микрочипов

Распределение шума имеет тяжёлые хвосты и не может быть оценено непосредственно — не существует экспериментов с известным сигналом.

Модель, учитывающая степени сродства проб с геном

Известные данные:

 I_{pk} — интенсивность флуоресценции пробы p на микрочипе k; g(p) — номер гена, для которого проба p специфична (определён конструкцией микрочипа).

Неизвестные параметры:

 c_{gk} — уровень экспрессии гена g на микрочипе k; a_p — коэффициент **сродства** (affinity) пробы p гену g(p).

$$I_{pk} \approx \hat{I}_{pk} = a_p c_{g(p)k}$$

Задача распадается на G независимых подзадач неотрицательного матричного разложения ранга 1.

В стандартных методах анализа микрочипов используется именно такая модель, но коэффициенты сродства в ней не фиксированы, а определяются каждый раз по анализируемой выборке.

База данных GEO содержит данные тысяч микрочиповых экспериментов. Идея: использовать эту информацию для настройки моделей.

Результаты оценки качества модели как функции от α и β

Функционал метода согласования вклада

Функционал достигает минимума при $\alpha=-0.5,\ \beta=0.75$ (традиционная логнормальная модель шума соответствует $\alpha=\beta=0$).

Неотрицательное матричное разложение

Анализ данных ДНК-микрочипов

Результаты оценки качества модели как функции от α и β

Воспроизводимость коэффициентов сродства по двум подмножествам чипов:

$$rep_a = \frac{1}{G} \sum_{g=1}^{G} \frac{1}{P(g)} \sum_{p \in P(g)} \frac{\left| a_{pg}^1 - a_{pg}^2 \right|}{a_{pg}^1 + a_{pg}^2}.$$

Воспроизводимость оценок экспрессии:

$$rep_{c} = \frac{1}{G} \sum_{g=1}^{G} \frac{1}{K} \sum_{k=1}^{K} \frac{\left| c_{gk}^{1} - c_{gk}^{2} \right|}{c_{gk}^{1} + c_{gk}^{2}}.$$

Эффект альтернативного сплайсинга

Альтернативный сплайсинг — экспрессия части гена.

Проблема: пробы к отсутствующим частям не оценивают экспрессию:

Номер микрочипа

Модель, учитывающая эффект альтернативного сплайсинга

Идея: после настройки модели рассчитаем относительную ошибку, пропорциональную концентрациям и обратно пропорциональную интенсивностям:

$$e_{pk} = \frac{\hat{I}_{pk} - I_{pk}}{I_{pk}} \cdot c_{g(p)k}.$$

Пусть $e_{0.95} - 95\%$ выборочный квантиль e_{pk} ; создадим матрицу бинарных весов $W \in \{0,1\}^{P \times K}$ с элементами $w_{pk} = [e_{pk} < e_{0.95}].$

Веса легко встраиваются в обновления мультипликативного алгоритма:

$$\begin{split} X &\leftarrow \max \bigg(\varepsilon, X \otimes \left(\left(A^T \Big(P^{[\alpha]} \otimes Q^{[\beta-1]} \otimes W \Big) \right) \oslash \left(A^T \Big(Q^{[\alpha+\beta-1]} \otimes W \Big) \right) \right)^{[\omega(\alpha,\beta)]} \bigg), \\ A &\leftarrow \max \bigg(\varepsilon, A \otimes \left(\left(\left(P^{[\alpha]} \otimes Q^{[\beta-1]} \otimes W \right) X^T \right) \oslash \left(\left(Q^{[\alpha+\beta-1]} \otimes W \right) X^T \right) \right)^{[\omega(\alpha,\beta)]} \right) \end{split}$$

Будем повторять настройку модели и обновление весов несколько раз.

Результаты оценки качества модели как функции от α и β

Функционал метода согласования вклада

Функционал метода согла
сования вклада достигает минимума при $\alpha=-0.75, ~~\beta=0.75.$

Эффект кросс-гибридизации

Свечение пробы может быть вызвано генами, для которых она не специфична.

Проба 432:309	С	Т	G	С	С	А	С	А	Т	Т	G	С	Т	G	А	G	G	С	Т	С	А	G	А	G	С	
Ген GRIA1	 G	А	С	G	G	Т	G	Т	А	А	С	G	А	С	Т	С	С	G	А	G	Т	С	Т	С	G	
Ген GRIA3	 G	А	С	G	G	Т	G	Т	А	А	С	G	А	G	Т	С	С	G	А	G	Т	С	Т	С	G	
Ген SNRPN	 G	А	С	G	G	Т	G	Т	G	А	С	G	А	С	Т	С	С	Т	А	G	Т	С	С	А	С	
Ген DNAJC22	 G	А	С	G	G	Т	G	Т	А	Т	С	G	А	С	Т	С	С	А	С	С	С	А	G	А	Т	

Распределение среднего числа комплементарных генов:

Модель, учитывающая эффект кросс-гибридизации

Рассмотрим факторизованную модель ранга G:

$$I_{pk} \approx \hat{I}_{pk} = \sum_{g=1}^{G} a_{pg} c_{gk}.$$

Используем информацию о сходстве последовательностей проб и генов: положим $a_{pg} = 0$, если n_{pg} — число совпадающих нуклеотидов в пробе p и гене g — меньше 20.

Сформируем матрицу бинарных весов $W \in \{0,1\}^{P \times G}$ с элементами $w_{pg} = [n_{pg} \ge 20].$

Веса встраиваются в обновления матрицы А:

$$A \leftarrow W \otimes \max\left(\varepsilon, A \otimes \left(\left(\left(P^{[\alpha]} \otimes Q^{[\beta-1]}\right) X^T\right) \oslash \left(Q^{[\alpha+\beta-1]} X^T\right)\right)^{[\omega(\alpha,\beta)]}\right)$$

Неотрицательное матричное разложение

Анализ данных ДНК-микрочипов

Результаты оценки качества модели как функции от α и β

Функционал метода согласования вклада достигает минимума при lpha=-0.5,~~eta=0.75.

Дополнительные критерии качества

Используем данные эксперимента [Affymetrix, 2007], в котором смеси двух образцов в известных пропорциях наносились на несколько чипов каждая:

№ смеси <i>j</i>	1	2	3	4	5	6	7	8	9
Число чипов n_j	3	3	3	3	9	3	3	3	3
Доля РНК мозга p_j	0	0.05	0.1	0.25	0.5	0.75	0.9	0.95	1
Доля РНК сердца $1-p_j$	1	0.95	0.9	0.75	0.5	0.25	0.1	0.05	0

Вариабельность оценок экспрессии между повторами экспериментов (средний квадрат чистых ошибок):

$$var_{mix} = \frac{1}{27G} \sum_{g=1}^{G} \sum_{j=1}^{9} \sum_{u=1}^{n_j} \left(c_{gu}^j - \bar{c}_g^j \right)^2.$$

Степень нелинейности оценок экспрессии (средний квадрат ошибок, обусловленных неадекватностью модели):

$$lin_{mix} = \frac{1}{9G} \sum_{g=1}^{G} \sum_{j=1}^{9} n_j \left(\hat{c}_g^j - \bar{c}_g^j \right)^2.$$

Значения дополнительных критериев качества на полученных моделях

Метол	Учи	var ·	lin .			
метод	постоянство коэффициентов сродства	альтернативный сплайсинг	кросс- гибридизация	cur mix	unmix	
RMA	-	-	-	386.6	189.4	
1	+	-	-	160.4	114.1	
2	+	+	-	154.4	119.4	
3	+	-	+	168.0	117.4	

RMA — наиболее популярный метод оценки экспрессии.

Результаты

- Предложенный метод выбора оптимальной функции потерь в множестве АБ-дивергенций применён в задаче анализа экспрессии генов с помощью ДНК-микрочипов; получены оценки неизвестного распределения шума.
- Предложены следующие модели и методы их настройки:
 - модель, учитывающая постоянство коэффициентов сродства;
 - модель, учитывающая эффект альтернативного сплайсинга;
 - модель, учитывающая эффект кросс-гибридизации.
- Проведены эксперименты, показывающие, что каждая из настроенных моделей позволяет уменьшить вариабельность оценок экспрессии между повторами экспериментов на 56-60% и степень нелинейности оценок экспрессии — на 37-40%.

Публикации

- Рябенко, Е. А. (2014). Мультипликативный метод неотрицательного матричного разложения с АБ-дивергенцией и его сходимость. Машинное обучение и анализ данных, 1(7), 800–816.
- Крайнова, Н. А., Хаустова, Н. А., Макеева, Д. С., Федотов, Н. Н., Гудим, Е. А., Рябенко, Е. А., Шкурников, М. Ю., Галатенко, В. В., Сахаров, Д. А., Мальцева, Д. В. (2013). Оценка потенциальных референсных генов для нормализации данных ПЦР-РВ в экспериментах с клетками линии HeLa. Биотехнология, 1, 42–50.
- Рябенко, Е. А. (2012). Настройка нелинейной модели данных экспериментов с экспрессионными ДНК-микрочипами. Математическая биология и биоинформатика, 7(2), 554–566.
- Sakharov, D. A., Maltseva, D. V, Riabenko, E. A., Shkurnikov, M. U., Northoff, H., Tonevitsky, A. G., Grigoriev, A. I. (2012). Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells. European journal of applied physiology, 112(3), 963–972.
- Riabenko, E., Kogadeeva, M., Gavrilyuk, K., Sokolov, E., Shanin, I., Tonevitsky, A. G. (2012). Comparing Affymetrix Human Gene 1.0 ST preprocessing methods on tissue mixture data. 6th International Conference on Bioinformatics and Biomedical Engineering (iCBBE) (pp. 631–634). Shanghai, China.
- Мальцева, Д. В., Рябенко, Е. А., Сизова, С. В., Яшин, Д. В., Хаустова, С. А., Шкурников, М. Ю. (2012). Влияние физической нагрузки на экспрессию генов HSPBP1, PGLYRP1 и HSPA1A в лейкоцитах человека. Бюллетень экспериментальной биологии и медицины, 153(6), 846–850.
- Riabenko, E. A., Tonevitsky, E. A., Tonevitsky, A. G., Grigoriev, A. I. (2011). Structural Peculiarities of Human Genes Which Expression Increases in Response to Stress. American Journal of Biomedical Sciences, 3(2), 90–94.
- Рябенко, Е. А., Когадеева, М. С. (2011). Нижняя граница числа комплементарных нуклеотидов при моделировании кросс-гибридизации. ММРО-15, г. Петрозаводск. (с. 540–542). МАКС Пресс.
- Когадеева, М. С., Рябенко, Е. А. (2011). Математическая модель данных микрочипов ДНК, учитывающая эффекты кросс-гибридизации и насыщения. ММРО-15, г. Петрозаводск. (с. 536–539). МАКС Пресс.

Результаты, выносимые на защиту

- Метод адаптивного выбора функционала потерь в задаче неотрицательного матричного разложения.
- Метод получения неотрицательного матричного разложения с АБдивергенцией в качестве функции потерь, доказательство его глобальной сходимости к точке, сколь угодно близкой к стационарной.
- Модели данных экспериментов с ДНК-микрочипами, учитывающие коэффициенты сродства, эффекты альтернативного сплайсинга и кросс-гибридизации, настроенные с помощью метода адаптивного выбора функционала потерь.
- Комплекс программ, позволяющий получить оценки экспрессии генов на основе предложенных моделей.