
Sentence encoders

Потапенко Анна Александровна

21 ноября 2018 г.

Математические методы анализа данных

https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a

SOTA

Skip-thoughts (2015)

h1 h2 h3

Some input phrase <EOS> Next phrase in text

<EOS>textinphraseNext

v s1 s2 s3 s4

• Predicts next and previous sentences
• Encoder-decoder model (GRU or bi-GRU)

Kiros et. al. Skip-Thought Vectors, 2015, https://github.com/ryankiros/skip-thoughts.

Thought vector

• Natural Language Inference task
• 570k human-written English sentence pairs
• Classification: entailment, contradiction, neutral
• Mechanical Turk judgements

SNLI dataset

Bowman et al. A large annotated corpus for learning natural language inference. https://nlp.stanford.edu/projects/snli/

InferSent (FAIR, 2017)

• Supervised training on SNLI corpus
• LSTM-encoder states aggregation methods:
• First/last states
• Pooling
• Self-attention
• Convolutions

Paper: https://arxiv.org/pdf/1705.02364.pdf

v (bi-) LSTM / GRU

Sentence encoders

Some nice text beto encoded

h1 h2 h3 h4 h5 h6

v = (h1;hn)

Pooling

Some nice text beto encoded

take max or mean

v (bi-) LSTM / GRU
v Max/mean pooling

h1 h2 h3 h4 h5 h6

v =
1

n

nX

i=1

hi

Inner-attention [Lin, 2017]

Some nice text beto encoded

v (bi-) LSTM / GRU
v Self-attention

h1 h2 h3 h4 h5 h6

a = softmax(w th(WH
T))

weighted sum

v =
nX

i=1

aihi

Inner-attention [Lin, 2017]

v (bi-) LSTM / GRU
v Self-attention
v Multiple heads!

v = (v1; v2; . . . ; vm)

h1 h2 h3 h4 h5 h6 h1 h2 h3 h4 h5 h6 h1 h2 h3 h4 h5 h6

concatenate

vk =
nX

i=1

aki hi

Convolutions

v (bi-) LSTM / GRU
v Hierarchical convolutions
v Multiple layers (4 in InferSent paper)

h1 h2 h3 h4 h5 h6

max-pooling

max-pooling

con
caten

ate

Dilated convolutions
v Here and before: LSTMs are not actually needed.
v Dilated convolutions: grow receptive field

exponentially with linear increase in parameters.

ByteNet: Neural Machine Translation in Linear Time (2017)
WaveNet: A Generative Model for Raw Audio (2016)

Convolutions: parameters per layer
d – embeddings dimension;
n – sequence length;
k – filter size.

Parameters per layer:

v Usual convolution: O(k * d * d)

v Depth-wise convolution: O(k * d)

v Light-weight convolutions: O(k * d/b)

(To get time complexity, further multiply by n).

d – vector dimension; n – sequence length; k – filter size.

v Usual convolutions: O(k * d * d)

(k * d) weights for rth element of tth vector:

Usual convolutions

st

N (t)

h1 h2 h3 h4 h5

srt =
kX

i=1

dX

j=1

Wijrh
j
t+i�d k

2 e

d – vector dimension; n – sequence length; k – filter size.

v Depth-wise convolutions: O(k * d)

jth element of target depends on jth element of source:

v Light-weight convolutions: O(k * d/b)

convolution weights shared for blocks of size b:

Depth-wise convolutions

sjt =
kX

i=1

Wij h
j
t+i�d k

2 e

sjt =
kX

i=1

Wi,j//b h
j
t+i�d k

2 e

d – vector dimension; n – sequence length; k – filter size.

v Dynamic convolutions: O(k * d/b * d)

Compute weights as a function of the current state ht:

Use softmax to get weights normalized over positions.

• convolution weights depend on the current position t
• scales linearly in sequence length
• would not work for usual convolutions (k*d3 params)

Pay less attention [ICLR-2019]

Wil = softmaxi

✓ dX

r=1

Ui,l,rh
r
t

◆

Paper: https://openreview.net/pdf?id=SkVhlh09tX

Attention is all you need [NIPS-2017]

To find st given [h1, … hn]:

• query: q = Wq ht

• keys: Y = Wk [h1, … hn]

• values: V = Wv [h1, … hn]

• content-based

• quadratic in sequence length

• number of parameters?
h1 h2 h3 h4 h5

st =
nX

i=1

ai vi

ai = softmax

✓
hq, yiip

d

◆

s2

Paper: https://arxiv.org/pdf/1706.03762.pdf

Multi-head: repeat and concatenate

To find st given [h1, … hn]:

• query: q = Wq ht

• keys: Y = Wy [h1, … hn]

• values: V = Wv [h1, … hn]

Number of parameters:

m * dy * d + m * dy * d + m * dv * d + m dv * d = O(d2)

d – dimension of h and s (512)
m – number of heads (8)
dy and dv – dimensions of keys and values (64)

st =
nX

i=1

ai vi

ai = softmax

✓
hq, yiip

d

◆

Convolutions vs self-attention

Depth-wise convolutions: Self-attention:

Shared weights in blocks Multiple heads

Note: both need some operations along the depth
(channels) dimension, e.g. linear or feed-forward:

st =
X

N (t)

W
T �H st = Ha

f(h) = ReLu(W1h+ b1)W2 + b2

Четные компоненты вектора:

Нечетные компоненты вектора:

Для фиксированного сдвига k
et+k выражается как линейная
комбинация компонент et.

Positional encoding

Annotated transformer:
http://nlp.seas.harvard.edu/2018/04/03/attention.html

e(2j)t = sin

✓
t

100002j/d

◆

e(2j+1)
t = cos

✓
t

100002j/d

◆

SentEval: 12 transfer tasks

• Binary and multi-class classification
• sentiment analysis (MR, SST)
• question-type (TREC)
• product reviews (CR)
• subjectivity/objectivity (SUBJ)
• opinion polarity (MPQA)

• Entailment and semantic relatedness
• SICK-E, SICK-R

• Paraphrase detection
• Microsoft Research Paraphrase Corpus

• Caption-Image retrieval
• COCO dataset

SentEval: 12 transfer tasks

SentEval tool: https://github.com/facebookresearch/SentEval

Comparison of sentence embeddings (2017)

InferSent paper: https://arxiv.org/pdf/1705.02364.pdf

Comparison of sentence embeddings (2017)

https://medium.com/huggingface/universal-word-sentence-embeddings-ce48ddc8fc3a

SOTA

Universal Sentence Encoders (Google, 2018)

USE paper: https://arxiv.org/abs/1803.11175

Two types of encoders:
v Transformer
v DAN (Deep Averaging Network)

Lots of transfer tasks used for tuning the model.

DAN: averaging + two layers

DAN paper: https://people.cs.umass.edu/~miyyer/pubs/2015_acl_dan.pdf

Syntax-aware models (out of scope of this lecture):

• Recursive NN: https://nlp.stanford.edu/~socherr/thesis.pdf
• TreeLSTM: https://www.aclweb.org/anthology/P15-1150
• DAG-LSTM: http://www.aclweb.org/anthology/N16-1106

Comparison of sentence embeddings (2018)

Perone et al.: https://arxiv.org/pdf/1806.06259.pdf

Note: averaging ELMo (https://allennlp.org/elmo)
context-aware word embeddings is really good!

ELMо: model

www.slideshare.nethttps://www.slideshare.net/mobile/shuntaroy/
a-review-of-deep-contextualized-word-representations-peters-2018

ELMо: model

www.slideshare.nethttps://www.slideshare.net/mobile/shuntaroy/
a-review-of-deep-contextualized-word-representations-peters-2018

ELMо: analysis

www.slideshare.nethttps://www.slideshare.net/mobile/shuntaroy/
a-review-of-deep-contextualized-word-representations-peters-2018

ELMо: analysis

www.slideshare.nethttps://www.slideshare.net/mobile/shuntaroy/
a-review-of-deep-contextualized-word-representations-peters-2018

ELMо: analysis

www.slideshare.nethttps://www.slideshare.net/mobile/shuntaroy/
a-review-of-deep-contextualized-word-representations-peters-2018

ELMо: conclusions

www.slideshare.nethttps://www.slideshare.net/mobile/shuntaroy/
a-review-of-deep-contextualized-word-representations-peters-2018

BERT: bidirectional transformer [11 Oct 2018]

BERT paper: https://arxiv.org/pdf/1810.04805.pdf

BERT: bidirectional transformer [11 Oct 2018]

BERT paper: https://arxiv.org/pdf/1810.04805.pdf

Trained in Masked Language Modeling setup.

BERT: computation cost
“The cost of pre-training is actually somewhat more
than moderate if you don’t have access to a Cloud TPU
pod :)
For example, OpenAI says that their 12 layer, 768-
hidden Transformer took 1 month to train
on 8 P100s doing 40 epochs over an 800m word
corpus.
BERT-Large is 24-layer, 1024-hidden and was trained
for 40 epochs over a 3.3 billion word corpus. So maybe
1 year to train on 8 P100s?
16 Cloud TPUs is just a lot of computing power.”

https://www.reddit.com/r/MachineLearning/comments/9nfqxz/r_%20
bert_pretraining_of_deep_bidirectional/

Resume

Apart from LSTMs there are:
- convolutions (many different types)
- self-attention (transformers are hot now)
- recursive neural nets (syntax-aware)
- all types of (hierarchical) pooling techniques

Pre-trained word embeddings:
- ELMO, BERT (multi-lingual)

Pre-trained sentence embeddings:
- InferSent (and their SentEval tool)
- USE (via tf.hub + google.colab)

