Automatic algorithm and hyperparameter selection based on data and users recommendations

Maxim Panov Yermek Kapushev

Insitute for Information Transmission Problems Datadvance PreMoLab

12 February 2016

1 Problem statement, motivating examples

- 2 Hints based model choice
- SBO for hyperparameter selection

Hyperparameters of algorithm

Hyperparameters are parameters defined outside training procedure.

Most ML algorithms have hyperparameters:

- Ridge regression and lasso regularization term
- SVM regularization and kernel parameters
- Neural network number of layers and neurons
- XGBoost number of trees, max depth, learning rate, ...

• ...

Example: hyperparameters of XGBoost

Hyperparameters of one of the most popular tool for gradient boosting **XGBoost**:

- Number of trees integer
- Max depth integer
- Objective function categorical
- Learning rate float
- Minimum loss reduction float
- Minimum child weight float
- Subsample ratio of instances float
- Subsample ratio of columns float

Motivation for hyperparameters tuning

Why automating hyperparameters tuning?

- Performance gain
- No universal set of hyperparameters, optimal hyperparameters depend on data set
- Optimization algorithm can do better than human
- Enable non-experts to use ML algorithms

Formal problem statement

Hyperparameter tuning problem involves:

- $\boldsymbol{\lambda}$ vector of hyperparameters $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_n)$
- $A_{oldsymbol{\lambda}}$ learning algorithm with hyperparameters $oldsymbol{\lambda}$
- \mathcal{D}_{train} training data set $\mathcal{D}_{train} = (X, Y) = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
- $\mathcal{L}(A_{\lambda}, \mathcal{D}_{train}, \mathcal{D}_{test})$ loss function achieved by A_{λ} when trained on data set \mathcal{D}_{train} and validated on \mathcal{D}_{test}

The task is to find

$$\boldsymbol{\lambda}^{*} = \operatorname*{arg\,min}_{\boldsymbol{\lambda}} \mathcal{L}\left(A_{\boldsymbol{\lambda}}, \mathcal{D}_{train}, \mathcal{D}_{test}\right)$$

Loss function

Example of loss function

$$\mathcal{L}(A_{\lambda}, \mathcal{D}_{train}, \mathcal{D}_{test}) = \text{RMSE} = \sqrt{\frac{1}{N_{test}} \sum_{i=1}^{N_{test}} (y_i - \hat{y}_i)^2},$$

where $y_i \in \mathcal{D}_{test}$, N_{test} — size of \mathcal{D}_{test} , \hat{y}_i is a prediction of a model learned on \mathcal{D}_{train} using algorithm A_{λ} .

Cross-validation is used if \mathcal{D}_{test} is not known.

Problem key properties

- \bullet Unknown, probably **non-convex** loss function $\mathcal L$
- Derivatives are not available
- Evaluation of loss function is expensive
- Evaluation time of ${\cal L}$ depends on ${m \lambda}$
- Different types of hyperparameters:
 - numerical (both integer and real-valued)
 - categorical
- Tree-structured configuration space

Example: artificial neural network

Hyperparameters:

- Number of layers
- Number of neurons in each layer
- Activation function for each layer
- Learning rate
- ...
- $\rightarrow\,$ complex tree-structured configuration space
- \rightarrow mixed types of hyperparameters

Problem statement, motivating examples

2 Hints based model choice

3 SBO for hyperparameter selection

Hints

Sometimes user knows something about the data

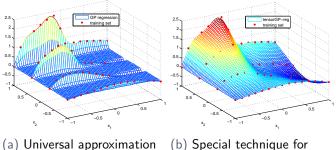
- Data is linear/quadratic
- Data is discontinuous
- Data has special structure (e.g. factorial design of experiments)

Sometimes user has requirements for model

- to be smooth
- to be interpolating
- to allow to estimate uncertainty of prediction

\rightarrow Configuration space may be reduced

Example



(a) Universal approximation technique

(b) Special technique fo factorial samples

Universal techniques don't take into account sample structure

- ightarrow poor quality
- $\rightarrow\,$ high computational complexity

Existing approaches

Grid Search

- Simple to implement and parallelize
- Requires large budget in high dimensional space

Random Search

- The maximum of 60 random observations lies within the top 5% of the true maximum, with 95% probability.
- $\rightarrow\,$ Random search finds better models than grid search if budget is small.

Bayesian optimization

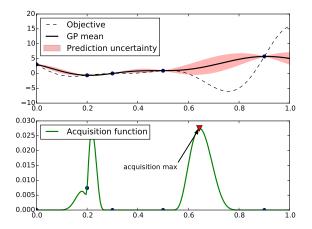
- "Smart" selection of new candidate point
- $\bullet\,$ Based on modeling dependence of loss function ${\cal L}$ on λ
- Sequential, hard to parallelize

Surrogate model Based Optimization

SBO uses surrogate model ${\cal M}$ that captures dependency of loss function ${\cal L}$ on $\lambda.$

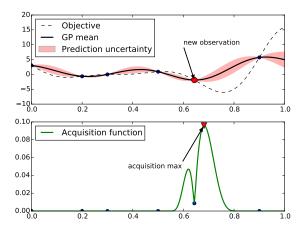
Generic SBO scheme

- 1. **Generate initial sample** of hyperparameters and evaluate objective function
- 2. Build model
- 3. Select new candidates using model-based criterion
- 4. Evaluate objective function
- 5. Augment current sample, goto step 2



(4 同) (4 日) (4 日)

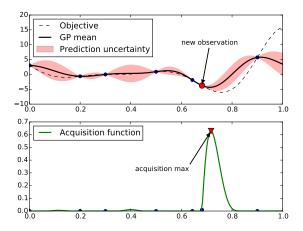
3



~) V (*

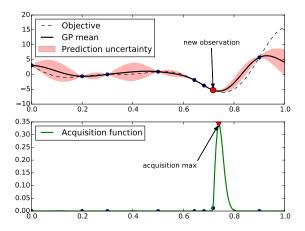
3

< □ > < □ > < □ >



< □ > < □ > < □ >

3



(4 同) (4 日) (4 日)

Э

Surrogate model Based Optimization

- So, we need
 - Surrogate modeling function
 - Procedure to choose candidate points

Surrogate models

Requirements for surrogate models:

uncertainty estimate $\sigma(\lambda)$ at any point λ .

Popular choices:

- Gaussian Processes
- ② Random Forest

Gaussian Process Regression

- $g(x) = f(x) + \varepsilon(x)$, where f(x) — Gaussian process (GP), ε — Gaussian white noise.
- GP is fully defined by its mean and covariance function.
- The covariance function of g(x):

$$K_g(x, x') = K(x, x') + \sigma_{noise}^2 \delta(x, x'),$$

 $\begin{array}{l} K(x,x') \mbox{ — covariance function of } f(x) \text{,} \\ \delta(x,x') \mbox{ — Kronecker delta.} \end{array}$

伺 ト イヨ ト イヨ ト

Gaussian Process Regression

• Prediction of g(x) at point x

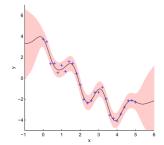
$$\hat{f}(x) = \mathbf{k}^T \mathbf{K}_g^{-1} \mathbf{y},$$

where
$$\mathbf{k} = (K_f(x_1, x), \dots, K_f(x_n, x)),$$

 $\mathbf{K}_g = ||K_g(x_i, x_j)||_{i,j}^N,$
 $\mathbf{y} = (g(x_1), \dots, g(x_N), \{(x_i, g(x_i))\}_{i=1}^N \text{ is a given data set.}$

Posterior variance

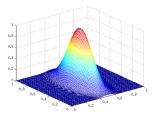
$$\sigma^2(x) = K_f(x, x) - \mathbf{k}^T \mathbf{K}_g^{-1} \mathbf{k}.$$



Covariance Function

• Squared exponential function

$$K_{se}(x, x') = \sigma^2 \exp\left(-\sum_{i=1}^d \theta_i (x_k - x'_k)^2\right)$$



- Evaluated candidates cluster in promising regions
- e Hierarchy of cluster sizes could be observed

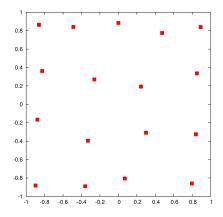


Figure : Initial sample

- Evaluated candidates cluster in promising regions
- e Hierarchy of cluster sizes could be observed

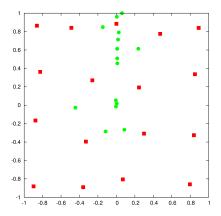


Figure : After few iterations

- Evaluated candidates cluster in promising regions
- e Hierarchy of cluster sizes could be observed

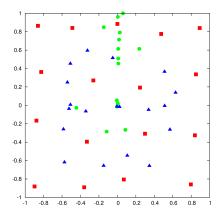
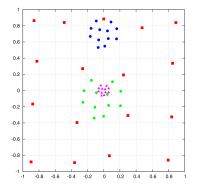


Figure : Converged solution

- Evaluated candidates cluster in promising regions
- ② Hierarchy of cluster sizes could be observed



- Instead of single evaluation of candidate we perform sampling in candidate vicinity.
- Vicinity of μ -th candidate we will denote by Ω_{μ} .

Covariance Function

• Multi-resolution covariance function

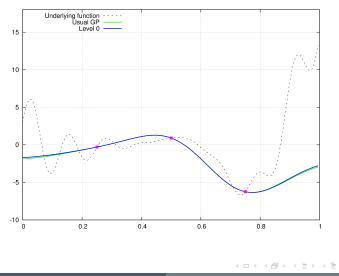
$$K(x,y) = K_0(x,y) + \sum_{\mu} \alpha_{\mu} \sum_{i,j} K^{(\mu)}(x, x^{(i)}_{\mu}) [K^{(\mu)}]^{-1} K^{(\mu)}(x^j_{\mu}, y),$$

where $K^{(\mu)}$ is an $\Omega_{\mu}\text{-specific covariance vector/matrix, }\Omega_{\mu}$ is a vicinity of candidate point.

Advantages of such covariance function:

- Non-stationary
- Robust w.r.t. sample augmentation

Illustration of multi-resolution GP



240

Illustration of multi-resolution GP

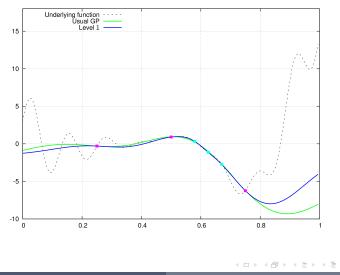


Illustration of multi-resolution GP

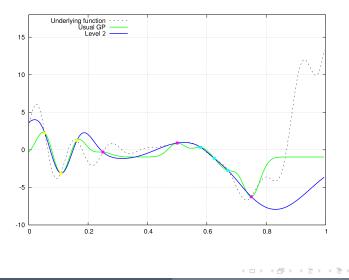


Illustration of multi-resolution GP

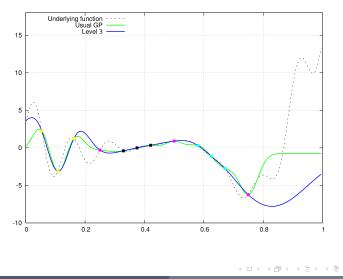
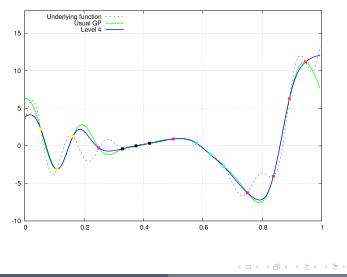


Illustration of multi-resolution GP



3

Choosing candidate point

Acquisition function $a(\pmb{\lambda},R)$ is used to choose new candidate point

$$\boldsymbol{\lambda}_{k+1} = \arg \max_{\boldsymbol{\lambda}} a(\boldsymbol{\lambda}, R_k),$$

where $R_k = \{(\lambda_i, c_i), c_i = \mathcal{L}(A_{\lambda_i}, \mathcal{D}_{train}, \mathcal{D}_{test})\}_{i=1}^k$.

High values of $a(\boldsymbol{\lambda},R)$ corresponds to *potentially* low values of loss

- because of low prediction
- because of great uncertainty in prediction
- both

Acquisition function

Let $c' = \min c$ — minimal value of objective found so far, $\mu(\boldsymbol{\lambda}|R)$ — model prediction, $\sigma(\boldsymbol{\lambda}|R)$ — uncertainty of prediction.

1. Probability of Improvement

$$a_{PI}(\boldsymbol{\lambda}, R) = \mathbb{P}(c < c') = \boldsymbol{\Phi}(\gamma(\boldsymbol{\lambda})),$$
$$\gamma(\boldsymbol{\lambda}) = \frac{c' - \mu(\boldsymbol{\lambda}|R)}{\sigma(\boldsymbol{\lambda}|R)}.$$

Pros: takes into account both prediction and uncertainty. Cons: doesn't take into account value of improvement.

Acquisition function

Let $c' = \min c$ — minimal value of objective found so far, $\mu(\boldsymbol{\lambda}|R)$ — model prediction, $\sigma(\boldsymbol{\lambda}|R)$ — uncertainty of prediction.

2. GP Upper Confidence Bound

$$a_{UCB}(\boldsymbol{\lambda}, R) = \mu(\boldsymbol{\lambda}|R) - \beta \sigma(\boldsymbol{\lambda}|R),$$

where β — exploitation-exploration ratio.

Pros: takes into account both prediction and uncertainty.

Cons: has hyperparameter itself.

Acquisition function

Let $c' = \min c$ — minimal value of objective found so far, $\mu(\boldsymbol{\lambda}|R)$ — model prediction, $\sigma(\boldsymbol{\lambda}|R)$ — uncertainty of prediction.

3. Expected Improvement

$$a_{EI}(\boldsymbol{\lambda}, R) = \mathbb{E}((c'-c)_{+}) =$$

= $\sigma(\boldsymbol{\lambda}|R) [\gamma(\boldsymbol{\lambda}) \boldsymbol{\Phi}(\gamma(\boldsymbol{\lambda})) + \mathcal{N}(\gamma(\boldsymbol{\lambda}); 0, 1)]$

Pros: takes into account prediction, its uncertainty and value of improvement.

Standard approach for SBO:

- Use Gaussian Processes regression to build model for $c(oldsymbol{\lambda})$
- Use Expected Improvement

Gaussian Processes model $p(c|\pmb{\lambda})$ which allows to compute Expected Improvement.

There is an alternative approach!

Tree-structured Parzen estimator (TPE)

Previous approaches model $p(c|\pmb{\lambda})$ explicitly. TPE separately estimates p(c) and $p(\pmb{\lambda}|c)$

$$p(\boldsymbol{\lambda}|c) = egin{cases} l(\boldsymbol{\lambda}), \ ext{if} \ c < c^* \ g(\boldsymbol{\lambda}), \ ext{if} \ c \geq c^* \end{cases}$$
 ,

where c^* is a γ -quantile of the losses obtained so far ($\gamma = 0.15$).

Tree-structured Parzen estimator (TPE)

Actually, in such setting we don't need p(c), because

$$a_{EI}(\boldsymbol{\lambda}, R) = \mathbb{E}((c'-c)_{+}) \propto \left(\gamma + \frac{g(\boldsymbol{\lambda})}{l(\boldsymbol{\lambda})}(1-\gamma)\right)^{-1}$$

TPE minimizes $\frac{g(\boldsymbol{\lambda})}{l(\boldsymbol{\lambda})}$.

Modeling $l(\boldsymbol{\lambda})$ and $g(\boldsymbol{\lambda})$

For each hyperparameter $\lambda_i \in \lambda$ a 1-D Parzen estimator is constructed.

- Continuous hyperparameters: Gaussian densities are placed at each hyperparameter value λ_i.
 Standard deviation — the largest distance to neighbors of λ_i.
- **Discrete** hyperparameters: probability are proportional to number of occurrences.

- 2 Hints based model choice
- 3 SBO for hyperparameter selection

pSeven Core framework

pSeven Core is a Python library developed by DATADVANCE.

It contains generic tools for

- Approximation
- Design of Experiment
- Dimension Reduction
- Sensitivity Analysis
- Optimization

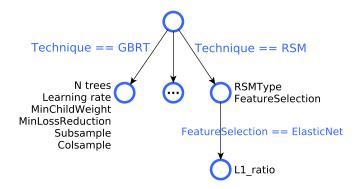
Requirements to hyperparameter tuning algorithm

Current state: some default values of hyperparameters, don't give desired performance for some problems.

Requirements according to problems arising in DATADVANCE practice

- Automatic approach to tune hyperparemters
- Support human-friendly hints
- Control over training time

Options structure



- Most of the branches have depth = 1
- Maximum depth = 2

1. **Reduce configuration space** according to hints, sample size and input dimension

Examples:

 Hints: DataFeatures=Quadratic
 → RSM with RSMType ∈ [Quadratic, PureQuadratic, Interactions]

1. **Reduce configuration space** according to hints, sample size and input dimension

Examples:

• Sample size = 10 000 \rightarrow don't use **GP**

1. **Reduce configuration space** according to hints, sample size and input dimension

Examples:

• Input dimension > sample size \rightarrow use **RSM** with **ElasticNet** or **GBRT**.

2. For each technique find optimal hyperparameters via

- SBO for numeric hyperparmeters
- brute force search for categorical hyperparameters

Techniques are either

- Cheap (e.g. RSM, GBRT)
- Medium expensive with few categorical levels (e.g. **GP** has only 6 combinations of categorical parameters)
- Expensive and have no hyperparameters to tune
- Expensive with tunable hyperparameters, but there is only 1 such technique

3. Choose the best performing technique and its hyperparameters.

3

合 ▶ ◀

- 2 Hints based model choice
- 3 SBO for hyperparameter selection

Experimental Setup for Regression

- A set of toy functions (about 30) is used
- Sample sizes: 80, 320
- Comparing algorithms:
 - Hyperopt (uses TPE)
 - SMAC (uses Random Forest)
 - SmartSelection (uses GP)
- Quality criterion:

RRMS =
$$\frac{\sqrt{\frac{1}{N}\sum_{i=1}^{N}(y_i - \hat{y}_i)^2}}{\sqrt{\frac{1}{N}\sum_{i=1}^{N}(y_i - \bar{y})^2}},$$

where \bar{y} is mean over training set

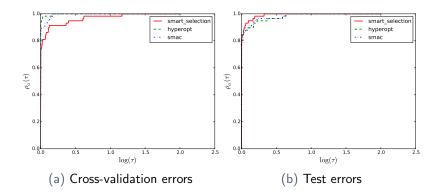
Dolan-Moré curves

- T problems, A algorithms
- e_{ta} approximation error (or training time) of *a*-th algorithm on *t*-th problem
- $\tilde{e}_t = \min_a e_{ta}$

$$\rho_a(\tau) = \frac{\#\{t : e_{ta} < \tau \tilde{e}_t\}}{T}$$

- The higher the curve is the better works corresponding algorithm
- $\rho_a(1)$ fraction of problems for which a-th algorithm worked the best

(日) (日) (日)



문 논 문

< /i>
< /i>
< /i>
< /i>
< /i>
< /i>

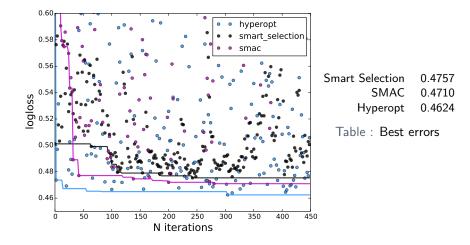
Experimental Setup for Classification

- Otto Group Product Classification Challenge from kaggle
- XGBoost is used for classification
- Comparing algorithms:
 - Hyperopt (uses TPE)
 - SMAC (uses Random Forest)
 - SmartSelection (uses GP)
- Quality criterion:

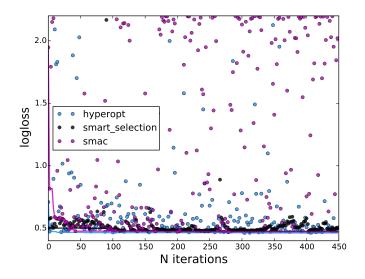
$$logloss = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \log(p_{ij}),$$

where N is the number of products in the test set, M is the number of class labels, y_{ij} is 1 if observation i is in class j and 0 otherwise, and p_{ij} is the predicted probability that observation i belongs to class j.

History of evaluations



History of evaluations



4) Q (4

문 문 문

< 🗇 🕨 < 🖃 🕨

Thank you for your attention!

3

合 ▶ ◀