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Abstract. We consider probabilistic topic models and more recent word embed-
ding techniques from a perspective of learning hidden semantic representations.
Inspired by a striking similarity of the two approaches, we merge them and learn
probabilistic embeddings with online EM-algorithm on word co-occurrence data.
The resulting embeddings perform on par with Skip-Gram Negative Sampling
(SGNS) on word similarity tasks and benefit in the interpretability of the compo-
nents. Next, we learn probabilistic document embeddings that outperform para-
graph2vec on a document similarity task and require less memory and time for
training. Finally, we employ multimodal Additive Regularization of Topic Mod-
els (ARTM) to obtain a high sparsity and learn embeddings for other modalities,
such as timestamps and categories. We observe further improvement of word
similarity performance and meaningful inter-modality similarities.

1 Introduction

Recent progress in deep natural language understanding prompted a variety of word
embedding techniques that work remarkably well for capturing semantics. These tech-
niques are usually considered as general neural networks that predict context words
given an input word [3, 27, 17]. Although this perspective is convenient to generalize to
more complex neural network architectures, e.g. skip-thought vectors [16], we believe
that it is also important to establish connections between neural embeddings and more
traditional models of distributional semantics. It gives theoretical insights about certain
models and enables to use previous work as a grounding for further advances.

One of the first findings in this line of research is interpreting Skip-Gram Nega-
tive Sampling (SGNS, [27]) as an implicit matrix factorization of the shifted Pointwise
Mutual Information (PMI) matrix [20]. It brings SGNS to the context of various vec-
tor space models (VSMs) developed during the last decades. Pantel and Turney [40]
provide a thorough survey of VSMs dividing them into word-word, word-context and
word-document categories based on the type of the co-occurrence matrix. According
to the distributional hypothesis [12], similar words tend to occur in similar contexts;
thus the rows of any of these matrices can be used for estimating word similarities [9].



Gentner [11] defines attributional similarity (e.g. dog and wolf ) and relational similar-
ity (e.g. dog:bark and cat:meow), which are referred to as similarity and analogy tasks
in more recent papers. While Baroni et al. [26] argue that word embeddings inspired
by neural networks significantly outperform more traditional count-based approaches
for both tasks, Levy et al. [21] tune a shared set of hyperparameters and show that two
paradigms give a comparable quality.

We follow this line of research and demonstrate how principle ideas of the modern
word embedding techniques and probabilistic topic models can be mutually exchanged
to take the best of the two worlds. So far, topic modeling has been widely applied to fac-
torize word-document matrices and reveal hidden topics of document collections [15,
4]. In this paper we apply topic modeling to a word-word matrix to represent words
by probabilistic topic distributions. Firstly, we discover a number of practical learning
tricks to make the proposed model perform on par with SGNS on word similarity tasks.
Secondly, we show that the obtained probabilistic word embeddings (PWE) inherit a
number of benefits from topic modeling.

One such benefit is interpretability. Interpretability of each component as a coherent
topic is vital for many downstream NLP tasks. To give an example, exploratory search
aims not only to serve similar documents by short or long queries, but also to navigate
a user through the results. If a model can explain why certain items are relevant to the
query in terms of distinct topics, then these topics can be used to arrange the results
by categories. Murphy et al. [30] motivated the importance of interpretability and spar-
sity from the cognitive plausibility perspective and introduced Non-Negative Sparse
Embeddings (NNSE), which is a variation of Non-Negative Sparse Coding matrix fac-
torization. State-of-the-art techniques, such as SGNS or GloVe [35] lack both sparsity
and interpretability. To address this problem, more recent models [23, 39] extend SGNS
and CBOW [27] respectively. However, they do that with explicit modifications of op-
timization procedure, such as project gradient for SGD. A benefit of topic modeling
framework is that interpretability comes naturally with a probabilistic interpretation of
parameters.

Furthermore, probabilistic word embeddings can be easily extended with Additive
Regularization of Topic Models, ARTM [43]. This is a general framework to combine
multiple requirements in one topic model. In this work we use ARTM to obtain spar-
sity and to learn embeddings for additional modalities, such as timestamps, authors,
categories, etc. It enables us to investigate inter-modality similarities, because all the
embeddings are in the same space. Interestingly, additional modalities also improve
performance on word similarity task. Finally, we build probabilistic document embed-
dings and show that they outperform DBOW architecture of paragraph2vec [17] on a
document similarity task. Thus, we get a powerful framework for learning probabilistic
embeddings for various items and with various requirements. We train these models
with online EM-algorithm similar to [14] in BigARTM open-source library [41].

Related work includes Word Network Topic Model (WNTM, [45]) and Biterm
Topic Model (BTM, [44]) that use word co-occurrence data for analyzing short and
imbalances texts. However, they do not consider their models as a way to learn word
representations. There are also a number of papers on building hybrids of topic models
and word embeddings. Gaussian LDA [8] imposes Gaussian priors for topics in a se-



mantic vector space produced by word embeddings. The learning procedure is obtained
via Bayesian inference, however a similar idea is implemented more straightforwardly
in [38]. They use pre-built word vectors to perform clustering via Gaussian Mixture
Model and apply the model to Twitter analysis. Pre-built word embeddings are also
used in [33] to improve quality of topic models on small or inconsistent datasets. An-
other model, called Topical Word Embeddings (TWE, [22]) combines LDA and SGNS.
It infers a topic for each word occurrence and learns different embeddings for the same
word occurred under different topics. Unlike all these models, we do not combine the
models as separate mechanisms, but highlight a striking similarity of optimization ob-
jectives and merge the models.

The rest of the paper is organized as follows. In section 2 we remind the basics
of word embeddings and topic models. In sections 3 and 4 we discuss theoretic in-
sights and introduce our generalized approach. In the experiments section we use 3 text
datasets (Wikipedia, ArXiv, and Lenta.ru news corpus) to demonstrate high quality on
word similarity and document similarity tasks, drastic improvement of interpretability
and sparsity, and meaningful inter-modality similarities.

2 Related work

Definitions and notation. Here we introduce the notation that highlights a common
nature of all methods and will be used throughout the paper. Consider a set of docu-
ments D with a vocabulary W . Let nwd denote a number of times the word w occurs
in the document d. The document can be treated as a global context. We will be also
interested in a local context of each word occurrence, which is a bag of words in a win-
dow of a fixed size. Let nuv denote a number of co-occurrences of words u and v in a
sliding window, nu =

∑
v nuv , nv =

∑
u nuv , and n =

∑
u nu.

All the models will be parametrized with the matrices Φ and Θ, containing |T |-
dimensional embeddings.

Skip-Gram model. Skip-gram model learns word embeddings by predicting a local
context for each word in a corpus. The probability of word u from a local context of
word v is modeled as follows:

p(u|v) =
exp

∑
t φutθtv∑

w∈W exp
∑
t φwtθtv

, (1)

where Φ|W |×|T | = (φut) and Θ|T |×|W | = (θtv) are two real-valued matrices of pa-
rameters. According to the bag-of-words assumption, each word in the local context is
modeled independently, thus one can derive the log-likelihood as follows:

L =
∑
v∈W

∑
u∈W

nuv ln p(u|v)→ max
Φ,Θ

. (2)

where nuv denotes the number of times the two terms co-occurred in a sliding window.
However, normalization over the whole vocabulary in formula (1) prevents from learn-
ing the model effectively on large corpora. Skip-Gram Negative Sampling (SGNS) is



one of possible ways to tackle this problem. Instead of modeling a conditional probabil-
ity p(u|v), SGNS models the probability of a co-occurrence for a pair of words (u, v).
The model is trained on word pairs from the corpus (positive examples) as well as ran-
domly sampled pairs (negative examples):

∑
v∈W

∑
u∈W

nuv log σ

(∑
t

φutθtv

)
+ kEv̄ log σ

(
−
∑
t

φutθtv

)
→ max

Φ,Θ
, (3)

where σ is a sigmoid function, v̄ are sampled from unigram distribution and k is a
parameter to balance positive and negative examples. SGNS model can be effectively
learned via Stochastic Gradient Descent.

SGNS model can be extended to learn document representations if the probabilities
in (1) are conditioned on a document instead of a word. This architecture is called
DBOW [7] and it is one of the modifications of the popular paragraph2vec approach.

Topic model. Probabilistic Latent Semantic Analysis, PLSA [15] is a topic model that
describes words in documents by a mixture of hidden topics:

p(w|d) =
∑
t∈T

p(w|t)p(t|d) =
∑
t∈T

φwtθtd, (4)

where Φ|W |×|T | contains probabilities φwt of words in topics and Θ|T |×|D| contains
probabilities θtd of topics in documents. The distributions are learned via maximization
of the likelihood given normalization and non-negativity constraints:

L =
∑
d∈D

∑
w∈W

nwd log p(w|d)→ max
Φ,Θ

(5)

φwt ≥ 0,
∑
w

φwt = 1 (6)

θtd ≥ 0,
∑
t

θtd = 1. (7)

This task can be effectively solved via EM-algorithm [9] or its online modification [14].
The most popular Latent Dirichlet Allocation [4] topic model extends PLSA by using
Dirichlet priors for Φ and Θ distributions.

Additive Regularization of Topic Models, ARTM [43] is a non-Bayesian framework
for learning multiobjective topic models. The optimization task (5) is extended with n
additive regularizers Ri(Φ,Θ) that are balanced with τi coefficients:

L+R→ max
Φ,Θ

; R =

n∑
i=1

τiRi(Φ,Θ) (8)

This approach addresses the problem of the non-uniqueness of the likelihood maximiza-
tion (5) solution and imposes additional criteria to choose Φ and Θ. The optimization
is still done with online EM-algorithm, where M-step is modified to use the derivatives
of the regularization terms [43].



3 Probabilistic word embeddings

Consider a modification of PLSA to predict the word u in a local context of the word v:

p(u|v) =
∑
t∈T

p(u|t)p(t|v) =
∑
t∈T

φutθtv (9)

In this formulation the topic model approximates a word co-occurrence matrix instead
of a word-document matrix. Unlike in PLSA, Θ|T |×|W | contains probabilities θtv of
topics for words. However, from the topic modeling perspective, those words can be
treated as pseudo-documents. One may think of a pseudo-document derived by a word v
as a concatenation of all local contexts for all occurrences of the word v in the corpus.
A local context is still defined as a fixed-size window, but this definition can be easily
extended to use syntactic patterns, sentences, or any other structure.

Interestingly, this approach appears to be extremely similar to Skip-Gram model (1).
Both models predict the same probabilities p(u|v) and make use of the observed data by
optimizing exactly the same likelihood (2). Both models are parametrized with matrices
of hidden representations of words. The only difference is the space of the parameters:
while Skip-Gram has no constraints, the topic model learns non-negative and normal-
ized vectors that have a probabilistic interpretation. As a benefit, word probabilities can
be predicted with a mixture model of the parameters with no need in explicit softmax
normalization.

Learning probabilistic word embeddings (PWE) can be treated as a stochastic ma-
trix factorization of probabilities p(u|v) estimated from a corpus. This makes a perfect
analogy with matrix factorization formulations of SGNS [19], GloVe, NNSE, and other
similar techniques. GloVe uses a squared loss with a weighting function f(nuv) that
penalizes too frequent co-occurrences. Apart from two real-valued matrices of param-
eters, it introduces bias terms bu and b̃v . NNSE also uses a squared loss, but imposes
additional constraints to obtain sparse non-negative embeddings φu and guarantees the
limited l2-norm for Θ rows, which are called dictionary entries.

We summarize the connections between all mentioned models in Table 1. Each
method is decomposed into several components: the type of raw co-occurrence data
F = (fuv)

W×W , the matrix factorization loss, the constraints for a parameter space,
and the optimization technique. From this point of view, there is no big difference be-
tween so called count-based and predictive approaches. On the one hand, each method
counts fuv values (probably implicitly) and performs dimensionality reduction by a ma-
trix factorization. On the other hand, each matrix factorization objective can be treated
as a loss, which is used to train the model from data. More importantly, the unified
view provides a powerful tool to analyze a diverse set of existing models and exchange
components across them.

4 Additive regularization and embeddings for multiple modalities

The proposed probabilistic embeddings can be easily extended as a topic model. First,
there is a natural way to learn document embeddings. Second, additive regularization
of topic models [43] can be used to meet further requirements. In this paper we employ



Table 1. Learning word embeddings with a low-rank matrix factorization.

PWE

data type
objective
constrains
technique

Fuv = nuv
nv

= p̂(u|v)∑
v∈W nv KL

(
p̂(u|v)

∣∣∣∣ 〈φuθv〉)→ min
Φ,Θ

φut > 0,
∑
u φut = 1; θtv > 0,

∑
t θtv = 1

EM-algorithm (online by F columns)

SGNS

data type
objective
constrains
technique

Fuv = log nuvn
nunv

− log k∑
u∈W

∑
v∈W nuv log σ (〈φuθv〉) + k Ev̄ log σ (−〈φuθv〉)→ maxΦ,Θ

No constraints
SGD (online by corpus)

GloVe

data type
objective
constrains
technique

Fuv = log nuv∑
v∈W

∑
u∈W f(nuv)

(
〈φuθv〉+ bu + b̃v − lognuv

)2 → minΦ,Θ,b,b̃
No constraints

AdaGrad (online by F elements)

NNSE

data type
objective
constrains
technique

Fuv = max(0, log nuvn
nunv

) or SVD low-rank approximation∑
u∈W

(
‖fu − φuΘ‖2 + ‖φu‖1

)
→ minΦ,Θ

φut ≥ 0, ∀u ∈W, t ∈ T θtθ
T
t ≤ 1,∀t ∈ T

Online algorithm from [25]

it to obtain a high sparsity with no reduction in the accuracy of matrix factorization.
The regularization criteria is a sum of cross-entropy terms between the target and fixed
distributions:

R = −τ
∑
t∈T

∑
u∈W

βu lnφut (10)

where βu can be set to the uniform distribution.
Furthermore, we extend the topic model to incorporate meta-data or modalites, such

as timestamps, categories, authors, etc. Real data often has such type of information
associated with each document and it is desirable to build representations for these
additional tokens as well as for the usual words.

Recall that each pseudo-document v in our training data is formed by collecting
words u that co-occur with word v within a sliding window. Now we enrich it by the
tokens u of some additional modality m that co-occur with the word v within a docu-
ment. The only difference here is in using global document-based co-occurrences for
additional modalities as opposed to local window-based co-occurrences for the modal-
ity of words. Once the pseudo-documents are prepared, we employ Multi-ARTM ap-
proach [42] to learn topic vectors for tokens of each modality:∑

m∈M
λm

∑
v∈W 0

∑
u∈Wm

nuv ln p(u|v)︸ ︷︷ ︸
modality log-likelihood Lm(Φ,Θ)

→ max
Φ,Θ

, (11)

φut ≥ 0,
∑

u∈Wm

φut = 1, ∀m ∈M ; (12)

θtv ≥ 0,
∑
t∈T

θtv = 1. (13)



Table 2. Spearman correlation for word similarities on Wikipedia.

Model Data Optimization Metric
WordSim

Sim.
WordSim

Rel.
WordSim Bruni MEN SimLex-999

LDA nwd online EM hel 0.530 0.455 0.474 0.583 0.220
PWE nuv offline EM dot 0.709 0.635 0.654 0.658 0.240
PWE pPMI offline EM dot 0.701 0.615 0.647 0.707 0.276
PWE nuv online EM dot 0.718 0.673 0.685 0.669 0.263
SGNS sPMI SGD cos 0.752 0.632 0.666 0.745 0.384

where λm > 0 are modality weights, Wm are modality vocabularies, and m = 0
for the basic text modality. Optionally, the tokens of other modalities can also form
pseudo-documents and this would restore the symmetric property of the factorized ma-
trix. Regularizers can be still added to the multimodal optimization criteria.

Online EM-algorithm. Regularized multimodal likelihood maximization is performed
with online EM-algorithm implemented in BigARTM library [41]. First, we compute
all necessary co-occurrences and build the pseudo-documents as described before. We
store this corpus on disk and process it by batches of B = 100 pseudo-documents.
The algorithm starts with random initialization of Φ and Θ matrices. The E-step esti-
mates posterior topic distributions p(t|u, v) for words u in a pseudo-document v. These
updates are alternating with θtv updates for the given pseudo-document. After a fixed
number of iterations through the pseudo-document, θtv are thrown away, while p(t|u, v)
are used to compute incremental unnormalized updates for φut. These updates are ap-
plied altogether when the whole batch of pseudo-documents is processed. Importantly,
these procedure does not overwrite the previous value of Φ, but slowly forgets it with
an exponential moving average. The detailed formulas for the case of usual documents
can be found in [41]. Note that the only matrix which has to be always stored in RAM
is Φ. The number of epochs (runs through the whole corpus) in our experiments ranges
from 1 to 6.

5 Experiments

We conduct experiments on three different datasets. Firstly, we compare the proposed
Probabilistic Word Embeddings (PWE) to SGNS on Wikipedia dump by word similar-
ities and interpretability of the components. Secondly, we learn probabilistic document
embeddings on ArXiv papers and compare them to DBOW on the document similarity
task [7]. Finally, we learn embeddings for multiple modalities on a corpus of Russian
news Lenta.ru and investigate inter-modality similarities. All topic models are learnt
in BigARTM4 open source library [41] using Python interface5. SGNS is taken from
Hyperwords6 package and DBOW is taken from Gensim7 library.

4 bigartm.org
5 github.com/bigartm/bigartm-book/blob/master/applications/word embeddings.ipynb
6 bitbucket.org/omerlevy/hyperwords
7 radimrehurek.com/gensim/
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Word similarity tasks. We use Wikipedia 2016-01-13 dump and preprocess it with
Levy’s scripts2 to guarantee equal conditions for SGNS and topic modeling [21]. We
delete top 25 stop-words from the vocabulary, keep the next 100000 words, and delete
the word pairs that co-occur less than 5 times. We performed experiments for windows
of size 2, 5, and 10, but report here only window-5 results, as the others are analo-
gous. We use subsampling with the constant 10−5 for all models. While common for
SGNS, subsampling has never been used for topic modeling. However, our experiments
show that it slightly improves topic interpretability by filtering out too general terms
and therefore might be a good preprocessing recommendation. Also, we tried using dy-
namic window, which is a weighting technique based on the distance of the co-occurred
words, but we didn’t find it beneficial.

Following a traditional benchmark for word similarity tasks, we rank word pairs
according to our models and measure Spearman correlation with the human ratings
from WordSim353 dataset [10] partitioned into WordSim Similarity and WordSim Re-
latedness [1], MEN dataset [5], and SimLex-999 [13]. We consider SGNS model as a
baseline and investigate if probabilistic word embeddings (PWE) are capable of provid-
ing the comparable quality. We start with LDA and Hellinger distance for word vectors
as this is the default choice from many papers, e.g. [30]. Table 2 shows that SGNS dra-
matically outperforms LDA. Our further experiments demonstrate how to make topic
models work.

First, we get an improvement by modeling the word-word matrix instead of the
word-document matrix. Second, we investigate how to compute word similarity in the
obtained space of probabilistic embeddings. We find the topic distributions should be
normalized using Bayes’ rule p(t|u) = φutp(t)∑

t φutp(t)
and that dot-product performs better

than Hellinger distance or cosine similarity. Third, we find that online EM-algorithm
with incremental Φ updates performs better than its offline analogue, where Φ is over-
written once per epoch. We also find that it is beneficial to initialize Θ randomly each
time rather than store the values from the previous epoch. This combination of tricks
gives the accuracy comparable to SGNS.

To obtain sparsity, we add the regularizer at the last iterations of EM-algorithm
and observe 93% of zeros in word embeddings with the same performance on word
similarity tasks. We also try different co-occurrence scores instead of raw counts such



Table 3. Interpretability of topics.

PWE SGNS

art arbitration transports rana
painting ban recon walnut
museum requests grumman rashid
painters arbitrators convoys malek
gallery noticeboard piloted aziz

sculpture block stealth khalid
painter administrators flotilla yemeni

exhibition arbcom convoy andalusian
portraits sanctions supersonic bien
drawings mediation bomber gcc

Table 4. Event timestamps.

2015-12-18
SW release

2016-02-29
The Oscars

2015-05-09
Victory Day

jedi statuette great
sith award anniversary
fett nomination normandy

anakin linklater parade
chewbacca oscar demonstration
film series birdman vladimir

hamill win celebration
prequel criticism concentration
awaken director auschwitz
boyega lubezki photograph

as log nuv to penalize frequent co-occurrences or normalized nuv∑
u nuv

values to obtain a
sum of non-weighted KL-divergences in the optimization criteria. While most of these
weighting schemes give worse results, positive PMI values appear to be beneficial for
some testsets.

Interpretability of embedding components. We characterize each component by a set
of words with the highest values in the embedding matrix and check if those sets corre-
spond to some aspects that can be named by a human. Word intrusion [6] technique is
based on the idea that for well formed sets, a human expert can easily detect an intruder,
randomly sampled from the vocabulary. This technique has been widely used in topic
modeling and also for Non-Negative Sparse Embeddings [30] and Online Interpretable
Word Embeddings [24]. Word intrusion requires experts, but it can be automated by the
coherence score, which is shown to have high correlations with human judgements [32].
It averages pairwise similarities across the set of words. For similarities one can use
PMI scores from an external corpus [31], log-conditional probabilities from the same
corpus [29], distributional similarities [2], or other variants [36].

In our experiments we use the PMI-based coherence for top-10 and top-100 words
for each component. The score is averaged over the components and reported in Fig-
ure 1. For SGNS we consider two different schemes of ranking words within each
component. First, using the raw values; second, applying softmax by rows and using
Bayes’ rule to convert p(t|w) into p(w|t) probabilities. We show that the coherence
for probabilistic word embeddings is consistently higher than that of LDA or SGNS
for a range of embedding sizes. Also, this result is confirmed by visual analysis of the
obtained components (see Table 3 for the examples).

Document similarity task. In this experiment we learn probabilistic document embed-
dings on ArXiv corpus and test them on a document similarity task. The testset released
by Dai et. al [7] contains automatically generated triplets of a query paper, a similar pa-
per that shares key words, and a dis-similar paper that does not share any key words. The
quality is evaluated by the accuracy of identifying the similar one within each triplet.



Table 5. Spearman correlation for word similarities on Lenta.ru.

Model WordSim Sim WordSim Rel MC RG HJ SimLex
SGNS 0.630 0.530 0.377 0.415 0.567 0.243
CBOW 0.625 0.513 0.403 0.370 0.551 0.170
PWE 0.649 0.565 0.605 0.594 0.604 0.123

Multi-PWE 0.682 0.58 0.607 0.584 0.611 0.144

We preprocess8 plain texts of 963564 ArXiv papers with a total of 1416554733 tokens
and reduce the vocabulary size to 122596 words with a frequency-based filtering. The
restored mapping between the plain texts and the URLs from the testset9 covers 15853
triplets out of 20000.

We train embeddings with 1 epoch of online EM-algorithm. Note that the matrix
Θ is not stored, so memory consumption does not grow linearly with the number of
documents. Afterwards, we infer test embeddings with 10 passes on each document.
As a baseline, we train DBOW [7] with 15 epochs and use linear decay of learning
rate from 0.025 to 0.001; afterwards we infer test embeddings with 5 epochs. Unlike
online EM-algorithm, DBOW needs in-memory storage of document vectors and also
takes much longer to train (several hours instead of 30 minutes on the same machine).
We do not facilitate training word vectors in DBOW, because it slows down the process
dramatically.

Figure 2 shows that our ARTM model consistently outperforms DBOW for a range
of embedding sizes. The absolute numbers are also better than for all other methods
reported in [7], thus giving a new state-of-the-art on this dataset.

Multimodal embedding similarities. The experiments are held on Russian lenta.ru cor-
pus, that contains 100033 news with a total of 10050714 tokens. The corpus has addi-
tional modalities of timestamps (825 unique tokens), categories (22 unique tokens) and
sub-categories (97 unique tokens). The basic text modality has 54963 unique words.

We produce a collection of pseudo-documents using the window of size 5 and sub-
sampling. For evaluation we use HJ testset [34] with human judgments on 398 word
pairs translated to Russian from the widely used English testsets: MC [28], RG [37],
and WordSim353 [10]. We also use SimLex-999 testset translation [18].

Table 5 shows that probabilistic word embeddings (PWE) outperform SGNS for
most of the testsets even without using additional modalities. One can note that this
corpus is relatively small and it might be a reason for poor SGNS performance. We
have also tried CBOW [27] following a common recommendation to use it for small
data, but it performed even worse. Generally, we observe that topic modeling requires
less data for a good performance, thus the proposed PWE approach might be beneficial
for applications with limited data.

Next, we use additional modalities and optimize the modality weights in the objec-
tive (11). With this approach we observe a further boost in the performance for the word
similarity task (see Multi-PWE in Table 5). Finally, we experiment with two different

8 https://github.com/romovpa/arxiv-dataset
9 http://cs.stanford.edu/quocle/triplets-data.tar.gz



modes: using modalities only as tokens (a non-symmetric case) and both as tokens and
pseudo-documents (a symmetric case). While word similarities are better for the non-
symmetric case, we observe better inter-modality similarities for the symmetric case.
Table 4 provides several examples of remarkable timestamps and their closest words.
The words are manually translated from Russian to English for reporting purposes only.
Each column is easily interpretable as a coherent event, namely the release of Star Wars,
the Oscars 2016, and Victory Day in Russia.

6 Conclusions

In this work we revisited topic modelling techniques in the context of learning hidden
representations for words and documents. Topic models are known to provide inter-
pretable components but perform poorly on word similarity tasks. However, we have
shown that topic models and neural word embeddings can be made to predict the same
probabilities with the only difference in the probabilistic nature of parameters. This
theoretical insight enabled us to merge the models and get practical results. First, we
obtained probabilistic word embeddings (PWE) that work on par with SGNS on word
similarity tasks, but have high sparsity and interpretability of the components. Second,
we learned document embeddings that outperform DBOW on a document similarity
task and require less memory and time for training. Furthermore, considering the task
as a topic modeling, enabled us to adapt Multi-ARTM approach and learn embeddings
for multiple modalities, such as timestamps and categories. We observed meaningful
inter-modality similarities and a boost of the quality on the basic word similarity task.
In future we plan to apply the proposed probabilistic embeddings to a suite of NLP tasks
and take even more advantage of the additive regularization to incorporate task-specific
requirements into the models.
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