Minimum edit distance. ${ }^{1}$

Victor Kitov
v.v.kitov@yandex.ru

${ }^{1}$ With materials used from "Speech and Language Processing", D. Jurafsky and J. H. Martin.

Introduction

- Need to estimate distances between strings
- error correction:
- user typed graffe
- probably he meant giraffe
- named entity recognition
- Stanford President John Hennessy
- Stanford University President John Hennessy
- Minimum edit distance between two strings - the minimum number of editing operations (insertion, deletion, substitution) needed to transform one string into another.
- each editing operation has cost 1
- however we may assign different costs

Example

Distance from [intention] to [execution] is 5 .

- Optimal (minimum loss) conversion path:

$$
\begin{aligned}
& \text { intention delete } i \\
& \mathrm{n} \mathrm{t} \text { e n } \mathrm{t} \text { i on } \longleftarrow \text { substitute } n \text { bye } \\
& \text { e } \mathrm{t} \text { e } \mathrm{n} \text { t i on substitute } t \text { by } x \\
& \text { e } x \text { en } t \text { i on } \longleftarrow \text { insert } u \\
& \text { e } x \text { e n u t i o n } \longleftarrow \text { substitute } n \text { by } c \\
& \text { e x e c ution }
\end{aligned}
$$

- Optimzal path is found with dynamic programming.
- Main idea of dynamic programming: if path $X \rightarrow Y$ is optimal and is passes through Z then path $X \rightarrow Z$ should also be optimal (otherwise original path can be imporved).

Definitions

Define

- X-input string, Y-target string.
- len $(X)=n$, len $(Y)=m$
- $X[1 . . i]$-substring, consisting of fisrt $i X$ symbols.
- $D(i, j)$ distance between $X[1 \ldots i]$ and $Y[1 \ldots j]$
- Then distance between X and Y is $D(n, m)$

Minimum edit distance calculation

- $D(0, j)=$ cost of j instertions
- $D(i, 0)=$ cost of i deletions
- Recurrent recalculation:

$$
D[i, j]=\min \left\{\begin{array}{l}
D[i-1, j]+\operatorname{del}-\operatorname{cost}(\text { source }[i]) \\
D[i, j-1]+\operatorname{ins}-\operatorname{cost}(\text { target }[j])) \\
D[i-1, j-1]+\operatorname{sub}-\operatorname{cost}(\text { source }[i], \text { target }[j])
\end{array}\right.
$$

Demo

	$\#$	\mathbf{e}	\mathbf{x}	\mathbf{e}	\mathbf{c}	\mathbf{u}	\mathbf{t}	\mathbf{i}	\mathbf{o}	\mathbf{n}
$\#$	0	1	2	3	4	5	6	7	8	9
\mathbf{i}	$\mathbf{1}$	$\nwarrow \leftarrow \uparrow 2$	$\nwarrow \leftarrow \uparrow 3$	$\nwarrow \leftarrow \uparrow 4$	$\nwarrow \leftarrow \uparrow 5$	$\nwarrow \leftarrow \uparrow 6$	$\nwarrow \leftarrow \uparrow 7$	$\nwarrow 6$	$\leftarrow 7$	$\leftarrow 8$
\mathbf{n}	2	$\nwarrow \leftarrow \uparrow \mathbf{3}$	$\nwarrow \leftarrow \uparrow 4$	$\nwarrow \leftarrow \uparrow 5$	$\nwarrow \leftarrow \uparrow 6$	$\nwarrow \leftarrow \uparrow 7$	$\nwarrow \leftarrow \uparrow 8$	$\uparrow 7$	$\nwarrow \leftarrow \uparrow 8$	$\nwarrow 77$
\mathbf{t}	3	$\nwarrow \leftarrow \uparrow 4$	$\nwarrow \leftarrow \uparrow \mathbf{5}$	$\nwarrow \leftarrow \uparrow 6$	$\nwarrow \leftarrow \uparrow 7$	$\nwarrow \leftarrow \uparrow 8$	$\nwarrow 7$	$\leftarrow \uparrow 8$	$\nwarrow \leftarrow \uparrow 9$	$\uparrow 8$
\mathbf{e}	4	$\nwarrow 3$	$\leftarrow 4$	$\nwarrow \leftarrow \mathbf{5}$	$\leftarrow \mathbf{6}$	$\leftarrow 7$	$\leftarrow \uparrow 8$	$\nwarrow \leftarrow \uparrow 9$	$\nwarrow \leftarrow \uparrow 10$	$\uparrow 9$
\mathbf{n}	5	$\uparrow 4$	$\nwarrow \leftarrow \uparrow 5$	$\nwarrow \leftarrow \uparrow 6$	$\nwarrow \leftarrow \uparrow 7$	$\nwarrow \leftarrow \uparrow \mathbf{8}$	$\nwarrow \leftarrow \uparrow 9$	$\nwarrow \leftarrow \uparrow 10$	$\nwarrow \leftarrow \uparrow 11$	$\nwarrow \uparrow 10$
\mathbf{t}	6	$\uparrow 5$	$\nwarrow \leftarrow \uparrow 6$	$\nwarrow \leftarrow \uparrow 7$	$\nwarrow \leftarrow \uparrow 8$	$\nwarrow \leftarrow \uparrow 9$	$\nwarrow \mathbf{8}$	$\leftarrow 9$	$\leftarrow 10$	$\leftarrow \uparrow 11$
\mathbf{i}	7	$\uparrow 6$	$\nwarrow \leftarrow \uparrow 7$	$\nwarrow \leftarrow \uparrow 8$	$\nwarrow \leftarrow \uparrow 9$	$\nwarrow \leftarrow \uparrow 10$	$\uparrow 9$	$\nwarrow \mathbf{8}$	$\leftarrow 9$	$\leftarrow 10$
\mathbf{o}	8	$\uparrow 7$	$\nwarrow \leftarrow \uparrow 8$	$\nwarrow \leftarrow \uparrow 9$	$\nwarrow \leftarrow \uparrow 10$	$\nwarrow \leftarrow \uparrow 11$	$\uparrow 10$	$\uparrow \uparrow 9$	$\nwarrow \mathbf{8}$	$\leftarrow 9$
\mathbf{n}	9	$\uparrow 8$	$\nwarrow \leftarrow \uparrow 9$	$\nwarrow \leftarrow \uparrow 10$	$\nwarrow \leftarrow \uparrow 11$	$\nwarrow \leftarrow \uparrow 12$	$\uparrow 11$	$\uparrow 10$	$\uparrow 9$	$\nwarrow \mathbf{8}$

Optimal path

- We can find optimal transformations path by
- storing the optimal steps in each $D(i, j)$ recalculation - after $D(n, m)$ is found, backtrace the optimal path
- Optimal path is equivalent to alginement of 2 strings:

```
INTE*NTION
||||||||||
* EXECUTION
d s s is
```

$\mathrm{d}=$ deletion, $\mathrm{s}=$ substitution, $\mathrm{i}=$ insertion.

