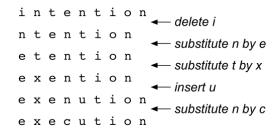
Minimum edit distance. - Victor Kitov

Minimum edit distance.¹

Victor Kitov

v.v.kitov@yandex.ru

¹With materials used from "Speech and Language Processing", D. Jurafsky and J. H. Martin.


Introduction

- Need to estimate distances between strings
 - error correction:
 - user typed graffe
 - probably he meant giraffe
 - named entity recognition
 - Stanford President John Hennessy
 - Stanford University President John Hennessy
- Minimum edit distance between two strings the minimum number of editing operations (insertion, deletion, substitution) needed to transform one string into another.
 - each editing operation has cost 1
 - however we may assign different costs

Example

Distance from [intention] to [execution] is 5.

• Optimal (minimum loss) conversion path:

- Optimzal path is found with dynamic programming.
- Main idea of dynamic programming: if path X → Y is optimal and is passes through Z then path X → Z should also be optimal (otherwise original path can be imporved).

Definitions

Define

• X-input string, Y-target string.

•
$$len(X) = n$$
, $len(Y) = m$

- X[1..i]-substring, consisting of fisrt i X symbols.
- D(i,j) distance between X[1...i] and Y[1...j]
- Then distance between X and Y is D(n, m)

Minimum edit distance calculation

- D(0,j) = cost of j instertions
- D(i,0) = cost of i deletions
- Recurrent recalculation:

$$D[i, j] = \min \begin{cases} D[i-1, j] + \text{del-cost}(source[i]) \\ D[i, j-1] + \text{ins-cost}(target[j])) \\ D[i-1, j-1] + \text{sub-cost}(source[i], target[j]) \end{cases}$$

Demo

	#	e	X	e	c	u	t	i	0	n
#	0	1	2	3	4	5	6	7	8	9
i	1	™<+↑ 2	⊼,←↑ 3	⊼,←↑ 4	⊼,←↑ 5	⊼,←↑ 6	<u>⊼</u> ←↑ 7	べ 6	← 7	$\leftarrow 8$
n	2	⊼,←↑ 3	<u>∿</u> ←↑4	⊼,←↑ 5	⊼,←↑ 6	<u>∿</u> ,⊷† 7	<u>⊼</u> ←↑ 8	<u>↑</u> 7	⊼,←↑ 8	乀7
t	3	<u>∿</u> , ←† 4	⊼, ← ↑ 5	<u>⊼</u> ←↑ 6	⊼,←↑ 7	<u>⊼</u> ,←↑ 8	<u> </u>	$\leftarrow \uparrow 8$	⊼,←↑ 9	$\uparrow 8$
e	4	べ 3	← 4	⊼, ⊢ 5	← 6	← 7	$\leftarrow \uparrow 8$	⊼,←↑ 9	∿, ←↑ 10	↑ 9
n	5	↑ 4	<u>∽</u> ←↑ 5	<u>∿</u> ←↑6	<u> ≺</u> ←↑ 7	⊼,⊷↑ 8	<u>∿</u> ←↑9	∿~ 10	∿,←↑ 11	<u>∖</u> † 10
t	6	↑ 5	<u>∿</u> ←↑6	<u> ≺</u> ←↑ 7	<u>⊼</u> ←↑ 8	<u>∿</u> ←↑ 9	べ 8	$\leftarrow 9$	← 10	← <u>↑</u> 11
i	7	↑ 6	<u>~</u> ←↑ 7	<u>⊼</u> ←↑ 8	<u>~</u> ←↑9	∿~ 10	↑ 9	K 8	$\leftarrow 9$	$\leftarrow 10$
0	8	↑ 7	$\stackrel{\scriptstyle \scriptstyle \nwarrow}{} \leftarrow \uparrow 8$	<u>∽</u> , ←↑ 9	∿, ←↑ 10	∿(→ 11	↑ 10	↑ 9	× 8	$\leftarrow 9$
n	9	$\uparrow 8$	${\rm Ker}9$	<u>∽</u> ←↑ 10	∿,←↑ 11	∿,←↑ 12	↑ 11	↑ 10	↑ 9	× 8

Optimal path

- We can find optimal transformations path by
 - storing the optimal steps in each D(i,j) recalculation
 - after D(n,m) is found, backtrace the optimal path
- Optimal path is equivalent to alginement of 2 strings:

```
INTE*NTION
| | | | | | | | | |
*EXECUTION
dss is
```

d=deletion, s=substitution, i=insertion.