Multi-class to Binary reduction of Large-scale classification Problems

Massih-Reza Amini

Joint work with Bikash Joshi, Ioannis Partalas and Franck Iutzeler

University Grenoble Alps
October the $5^{\text {th }}, 2016$

Grenoble, Capital of the Alps

Grenoble, France

Applied Mathematics and Computer Science Building

Computer Science and Applied Mathematics Laboratories

Classical learning framework

We consider an input space $\mathcal{X} \subseteq \mathbb{R}^{d}$ and an output space \mathcal{Y}.
Hypothesis : Pairs of examples $(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$ are identically and independently distributed (i.i.d) with respect to a fixed but unknown distribution \mathcal{D}.
Sampling: We observe a sequence of m pairs of examples (\mathbf{x}_{i}, y_{i}) generated i.i.d with respect to \mathcal{D}.
Goal : Find a function $g: \mathcal{X} \rightarrow \mathcal{Y}$, which belongs to a class of functions \mathcal{G}, which predicts the output y of a new observation x such that:
$\mathbb{P}(g(\mathbf{x}) \neq y)$ is the lowest possible.

New challenges with Emerging Applications

$$
\text { We consider an input space } \mathcal{X} \subseteq \mathbb{R}^{d}(d \gg 1) \text { and an }
$$

$$
\text { output space } \mathcal{Y},|\mathcal{Y}| \gg 1
$$

Pairs of examples $(x, y) \in \mathcal{X} \times \mathcal{V}$ are identically and
indept
but ur

World
Catalal．Dansk．Deutsch，Español，Eransais，Itoliane，且本立．Nederlands．Polski．Preckuă，Syenska．．

$\sqcup 5 \times 10^{\circ}$ sites
－ 10^{6} categories
－ 10^{5} editors
\square imbalanced nature of hierarchies
－Arbitrariness in taxonomy creation－a personal biases

Large-scale classification : power Iaw distribution of classes

Collection	K	d
DMOZ	7500	594158

Multiclass classification approaches

\square Uncombined approaches, i.e. MSVM or MLP. The number of parameters, M, is at least $O(K \times d)$.
\square Combined approaches based on binary classification :
\square One-Vs-one $-M \geq O\left(K^{2} \times d\right)$
\square One-Vs-Rest $-M \geq O(K \times d)$
\square For $K \gg 1$ and $d \gg 1$ traditional approaches do not pass the scale.

Outline

\square Motivation
\square Learning objective and reduction strategy
\square Experimental results

- Conclusion

Outline

- Motivation
\square Learning objective and reduction strategy
- Experimental results
- Conclusion

Learning objective

\square Large-scale multiclass classification,
\square Hypothesis : Observations $\mathbf{x}^{y}=(x, y) \in \mathcal{X} \times \mathcal{Y}$ are i.i.d with respect to a distribution \mathcal{D},
\square For a class of $\mathcal{H}=\{h: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}\}$, a ranking instanstaneous loss $h \in \mathcal{H}$ over an example \mathbf{x}^{y} by :

$$
e\left(h, \mathbf{x}^{y}\right)=\frac{1}{K-1} \sum_{y^{\prime} \in \mathcal{Y} \backslash\{y\}} \mathbb{1}_{h\left(\mathbf{x}^{y}\right) \leq h\left(\mathbf{x}^{y^{\prime}}\right)}
$$

- The aim is to find a function $h \in \mathcal{H}$ that minimizes the generalization error $L(h)$:

$$
L(h)=\mathbb{E}_{\mathbf{x}^{y} \sim \mathcal{D}}\left[e\left(h, \mathbf{x}^{y}\right)\right] .
$$

- Empirical error of a function $h \in \mathcal{H}$ over a training set $\mathcal{S}=\left(\mathbf{x}_{i}^{y_{i}}\right)_{i=1}^{m}$ is

$$
\hat{L}_{m}(h, \mathcal{S})=\frac{1}{m} \sum_{i=1}^{m} e\left(h, \mathbf{x}_{i}^{y_{i}}\right)
$$

Reduction strategy

- Consider the empirical loss

$$
\begin{aligned}
\hat{L}_{m}(h, \mathcal{S}) & =\frac{1}{m(K-1)} \sum_{i=1}^{m} \sum_{y^{\prime} \in \mathcal{Y} \backslash\left\{y_{i}\right\}} \mathbb{1}_{h\left(\mathbf{x}_{i}^{y_{i}^{\prime}}\right) \leq h\left(\mathbf{x}_{i}^{\mathbf{x}^{\prime}}\right)} \\
& =\underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\tilde{y}_{i} g\left(\mathbf{z}_{i}\right) \leq 0}}_{L_{n}^{\top}(g, T(S))}
\end{aligned}
$$

where $n=m(K-1), Z_{i}$ is a pair of couples costituted by a couple of example and its class and the couple corresponding to the example and another class, $\tilde{y}_{i}=1$ if the first couple in Z_{i} is the true couple and -1 otherwise, and $g\left(\mathbf{x}^{y}, \mathbf{x}^{y^{\prime}}\right)=h\left(\mathbf{x}^{y}\right)-h\left(\mathbf{x}^{y^{\prime}}\right)$.

Reduction strategy
 for the class of linear functions

```
Input: Labeled training set \(\mathcal{S}=\left(\mathbf{x}_{i}^{y_{i}}\right)_{i=1}^{m}\);
A binary classifier \(\mathcal{A}\);
Initialize
\(T(S) \leftarrow \emptyset ;\)
for \(i=1 . . m\) do
    for \(k=1 . . K\) do
        if \(y_{i}>k\) then
        \(\mid T(S) \leftarrow\left\{\left(\Phi\left(\mathbf{x}_{i}^{y_{i}}\right)-\Phi\left(\mathbf{x}_{i}^{k}\right),+1\right)\right\}\)
        end
        if \(y_{i}<k\) then
            \(\mid T(S) \leftarrow\left\{\left(\Phi\left(\mathbf{x}_{i}^{k}\right)-\Phi\left(\mathbf{x}_{i}^{y_{i}}\right),-1\right)\right\}\)
        end
    end
end
Learn \(\mathcal{A}\) on \(T(S)\)
```


Reduction strategy for the class of linear functions

```
Input: Labeled training set \(\mathcal{S}=\left(\mathbf{x}_{i}^{y_{i}}\right)_{i=1}^{m}\);
A binary classifier \(\mathcal{A}\);
Initialize
\(T(S) \leftarrow \emptyset ;\)
for \(i=1 . . m\) do
    for \(k=1 . . K\) do
        if \(y_{i}>k\) then
        \(\mid T(S) \leftarrow\left\{\left(\Phi\left(\mathbf{x}_{i}^{y_{i}}\right)-\Phi\left(\mathbf{x}_{i}^{k}\right),+1\right)\right\}\)
        end
        if \(y_{i}<k\) then
            \(T(S) \leftarrow\left\{\left(\Phi\left(\mathbf{x}_{i}^{k}\right)-\Phi\left(\mathbf{x}_{i}^{y_{i}}\right),-1\right)\right\}\)
        end
    end
end
Learn \(\mathcal{A}\) on \(T(S)\)
```

Problems :
D How to define $\Phi\left(\mathbf{x}^{y}\right)$,
Consistency of the ERM principle with interdependant data.

Consistency of the ERM principle with interdependant data

D Different statistical tools for extending concentration inequalities to the case of interdependent data,
\square tools based on colorable graphs proposed by (Janson, 2004) ${ }^{1}$.

1. S. Janson. Large deviations for sums of partly dependent random variables. Random Structures and Algorithms, 24(3) :234-248, 2004.

Theorem (Bikash et al. 2015)

Let $\mathcal{S}=\left(\mathbf{x}_{i}^{y_{i}}\right)_{i=1}^{m} \in(\mathcal{X} \times \mathcal{Y})^{m}$ be a training set constituted of m examples generated i.i.d. with respect to a probability distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$ and $T(\mathcal{S})=\left(\left(\boldsymbol{Z}_{i}, \tilde{y}_{i}\right)\right)_{i=1}^{n} \in(\mathcal{Z} \times\{-1,1\})^{n}$ the transformed set obtained with application T. Let $\kappa: \mathcal{Z} \rightarrow \mathbb{R}$ by a PSD kernel, and $\Phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{H}$ the associated mapping function. For all $1>\delta>0$, and all
$g_{w} \in \mathcal{G}_{B}=\{\mathbf{x} \mapsto\langle\boldsymbol{w}, \Phi(\mathbf{x})\rangle \mid\|\boldsymbol{w}\| \leq B\}$ with probability at least $(1-\delta)$ over $T(\mathcal{S})$ we have then:

$$
\begin{equation*}
L^{T}\left(g_{w}\right) \leq \epsilon_{n}^{T}\left(g_{w}, T(\mathcal{S})\right)+\frac{2 B \mathfrak{G}(T(\mathcal{S}))}{m \sqrt{K-1}}+3 \sqrt{\frac{\ln \left(\frac{2}{\delta}\right)}{2 m}} \tag{1}
\end{equation*}
$$

where $\epsilon_{n}^{T}\left(g_{w}, T(\mathcal{S})\right)=\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(\tilde{y}_{i} g_{w}\left(\boldsymbol{Z}_{i}\right)\right)$ with a surrogate Hinge loss $\mathcal{L}: t \mapsto \min (1, \max (1-t, 0)), L^{T}\left(g_{w}\right)=\mathbb{E}_{T(\mathcal{S})}\left[L_{n}^{T}\left(g_{w}, T(\mathcal{S})\right)\right]$ et $\mathfrak{G}(T(\mathcal{S}))=\sqrt{\sum_{i=1}^{n} d_{\kappa}\left(\boldsymbol{Z}_{i}\right)}$ with

$$
d_{\kappa}\left(\mathbf{x}^{y}, \mathbf{x}^{y^{\prime}}\right)=\kappa\left(\mathbf{x}^{y}, \mathbf{x}^{y}\right)+\kappa\left(\mathbf{x}^{y^{\prime}}, \mathbf{x}^{y^{\prime}}\right)-2 \kappa\left(\mathbf{x}^{y}, \mathbf{x}^{y^{\prime}}\right)
$$

Key Features of Algorithm

- Data dependent bound : If the feature representation of (x, y) pairs is independent of original dimension, then :
$\mathfrak{G}(T(S)) \leq \sqrt{n \times \text { Constant }} \approx$
$\sqrt{m \times(K-1) \times \text { Constant }}$ and the convergence rate is of order $O\left(\frac{1}{\sqrt{m}}\right)$.
\square Non-trivial joint feature representation (example-class pair)

D Same for any number of class
\square Same parameter vector for all classes

Outline

- Motivation
[Learning objective and reduction strategy
\square Experimental results
- Conclusion

Feature representation $\Phi\left(x^{y}\right)$

	Features	
1.	$\sum_{t \in y \cap x} \ln \left(1+y_{t}\right)$	2. $\sum_{t \in y \cap x} \ln \left(1+\frac{I_{\mathcal{S}}}{\mathcal{S}_{t}}\right)$
3. $\sum_{t \in y \cap x} I_{t}$	4. $\sum_{t \in y \cap x} \ln \left(1+\frac{y_{t}}{\|y\|}\right)$	
5.	$\sum_{t \in y \cap x} \ln \left(1+\frac{y_{t}}{\|y\|} \cdot I_{t}\right)$	6. $\sum_{t \in y \cap x} \ln \left(1+\frac{y_{t}}{\|y\|} \cdot \frac{I_{s}}{\mathcal{S}_{t}}\right)$
7. $\sum_{t \in y \cap x}^{t} 1$	8. $\sum_{t \in y \cap x} \frac{y_{t}}{\|y\|} \cdot I_{t}$	
9. $d_{1}\left(\mathbf{x}^{y}\right)$	10. $d_{2}\left(\mathbf{x}^{y}\right)$	

- x_{t} : number of occurrences of terme t in document x,
$\square \mathcal{V}$: Number of distinct terms in \mathcal{S},
$\square y_{t}=\sum_{x \in y} x_{t},|y|=\sum_{t \in \mathcal{V}} y_{t}, \mathcal{S}_{t}=\sum_{x \in \mathcal{S}} x_{t}$, $I_{\mathcal{S}}=\sum_{t \in \mathcal{V}} \mathcal{S}_{t}$.
$\square I_{t}$: idf of the terme t,

Experimental results on text classification

Collection	K	d	m	Test size
DMOZ	7500	594158	394756	104263
WIKIPEDIA	7500	346299	456886	81262
$K \times d=O\left(10^{9}\right)$				

\square Random samples of $100,500,1000,3000,5000$ and 7500

Experimental Setup

Implementation and comparison :
\square SVM with linear kernel as binary classification algorithm
\square Value of Chosen by cross-validation
\square Comparison with OVA, OVO, M-SVM, LogT
Performance Evaluation :
\square Accuracy : Correctly classified examples in test dataset
\square Macro F-Measure : Harmonic mean of precision and recall

Experimental Results

Result for 7500 class :

	DMOZ-7500			Wikipedia-7500		
	Acc.	MaF_{1}	N_{c}	Acc.	MaF_{1}	N_{c}
mRb	.479	. 352	. 495	.437 ${ }^{\downarrow}$. 378	. 551
OVA	. 549	. $282 \downarrow$. 379	. 484	. $348{ }^{\downarrow}$. 489
LogT	. $311{ }^{\downarrow}$.096	. 194	.231 ${ }^{\downarrow}$.151 ${ }^{\downarrow}$. 287

OVO and M-SVM did not pass the scale for 7500 classes
$\square N_{c}$: Proportion of classes for which at leaset one TP document found
\square mRb covers 6-9.5\% classes than OVA (500-700 classes)

\# of Classes Vs. Macro F-Measure

\# of Classes Vs. Macro F-Measure

Conclusion

\square A new method of large-scale multiclass classification based on reduction of multiclass classification to binary classification.
\square Efficiency of deduced algorithm comparable or better than the state of the art multiclass classification approaches.

