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WHAT IS TOPIC HIERARCHY
Topic hierarchy is an oriented multipartite

graph of topics that characterises the topical
structure of document collection.
Each topic t is represented by a set of terms.
The hierarchy helps to navigate over docu-

ment collection and to understand how big
topics are divided into smaller ones.

BASE TOPIC MODEL
Given:
D is a set of documents, W is a set of terms,
ndw is a frequency of term w in document d.

Find model:

p(w|d) =
∑
t∈T

p(w|t)p(t|d) =
∑
t∈T

ϕwtθtd

with parameters ϕwt, θtd:

• ϕwt = p(w|t) is a distribution over
terms in topic t;

• θtd = p(t|d) is a distribution over topics
in document d.

Optimization task is regularized likelihood
maximization:∑
d∈D

∑
w∈d

ndw ln
∑
t∈T

φwtθtd︸ ︷︷ ︸
L(Φ,Θ)

+
n∑

i=1

τiRi(Φ,Θ)︸ ︷︷ ︸
R(Φ,Θ)

→ max
Φ,Θ

where R(Φ,Θ) is a weighted sum of regular-
ization criteria.

HIERARCHY REGULARIZER
The hierarchy is built level by level. First

level is a plain flat model. To construct next
levels, hierarchy regularizer is used. Denote
T is a set of previous level (parent) topics, S
is a set of current level topics, ψts = p(t|s).
The aim is to decompose already built parent
topic-doc matrix: Θpar ≈ ΨΘ.
Hierarchy regularizer:

R1(Φ,Θ,Ψ) = λ
∑
t∈T

∑
d∈D

θpartd ln
∑
s∈S

ψtsθsd

MODEL TRAINING
Applying Karush–Kuhn–Tucker theorem,

one can obtain the following EM-algorithm:
E-step:
p(s|d,w) ∝ ϕwsθsd
p(s|t, d) ∝ ψtsθsd
M-step:
nws =

∑
d∈D

ndwp(s|d,w)

n1
sd =

∑
w∈W

ndwp(s|d,w)

nts =
∑
d∈D

θpartd p(s|t, d)

n2
sd =

∑
t∈T

θpartd p(s|t, d)

φws ∝
(
nws + φws

∂R

∂φws

)
+

ψts ∝
(
nts + ψts

∂R

∂ψts

)
+

θsd ∝
(
n1
sd + λn2

sd + θsd
∂R

∂θsd

)
+

SPARSING REGULARIZERS
On the each level topics are divided into

two groups: domain and background topics.
Second group collects common lexis for cur-
rent level or for the whole collection; first
group is for domain-specific lexis.

• Φ Sparsing. Each domain topic con-
tains small number of domain-specific
terms, while background topics con-
tain the majority of terms:

R2(Φ) = −
∑

s∈Sdom

KL(α‖ϕs) +

+
∑

s∈Sbcg

KL(α‖ϕs)

α is uniform or prior collection distri-
bution over terms.

• Φ Decorrelating. All topics on one level
are significantly different:

R3(Φ) = −
∑
s∈S

∑
s′∈S\s

∑
w∈W

φwsφws′

• Θ Sparsing. Each document is related
to a few number of domain topics, but
it must be related to the background
topic:

R4(Θ) = −
∑

d∈DKL(β‖θd).

QUALITY MEASURES
The quality of hierarchy is measured per

level. Criteria:

1. Size of topic kernel:

size = |Wt|, Wt = {w : p(t|w) > 0.25}

2. Topic contrast: 1
|Wt|

∑
w∈Wt

p(t|w)

3. Topic purity:
∑

w∈Wt

p(w|t)

4. Topic coherence:

2
k(k−1)

k∑
i=1

i−1∑
j=1

PMI(wi, wj),

where terms in t are sorted by p(w|t).
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EXPERIMENTS
Text dataset came from two Data Analysis

conferences: Mathematical Methods of Pattern
Recognition and Intellectualization of Informa-
tion Processing, |D| = 850, |W | = 42000.
To increase interpretability n-grams are used
(they are collected using external software).

Comparison of flat and hierarchical models

model purity contrast coherence
flat 0.999 0.961 1.063
hier 0.998 0.959 1.211
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