Natural Language Processing

Seminar 2

CMC MSU, February 18, 2017

Sequence models in NLP

Outline:

- Models Zoo
 - Hidden Markov Model
 - Maximum Entropy Markov Model
 - Linear-chain CRF
- Applied tasks
 - Features engineering for NER
 - POS-tagging in NLTK

Sequence modes in NLP

- Independent classifier for every position
- Graphical model
 - generative (HMM aka Naive Bayes)
 - discriminative (MEMM, CRF aka Logistic Regression)

Recap: Naive Bayes

Model (x - feature vector, y - one label):

$$p(y, \mathbf{x}) = p(y) \prod_{k=1}^{K} p(x_k | y).$$

- Training: estimate probabilities by likelihood maximization
- Inference: y* = argmax p(y, x)

Hidden Markov Model

Model:

$$p(\mathbf{y}, \mathbf{x}) = \prod_{t=1}^{\mathrm{T}} p(y_t | y_{t-1}) p(x_t | y_t).$$

- Training: Baum-Welch algorithm
 - E-step: Forward-Backward (expectation over hidden variables)
 - M-stem: Likelihood maximization (update parameters)
- Inference (decoding): Viterbi algorithm

Recap: Logistic Regression (MaxEnt)

Model:

$$p(y|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp\left\{\theta_y + \sum_{j=1}^{K} \theta_{y,j} x_j\right\}$$

In other notation:

$$p(y|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp\left\{\sum_{k=1}^{K} \theta_k f_k(y, \mathbf{x})\right\}$$

Training: conditional likelihood maximization (e.g. by SGD)

Maximum Entropy Markov Model

Model:

$$p_{\text{MEMM}}(\mathbf{y}|\mathbf{x}) = \prod_{t=1}^{T} p(y_t|y_{t-1}, \mathbf{x})$$
$$p(y_t|y_{t-1}, \mathbf{x}) = \frac{1}{Z_t(y_{t-1}, \mathbf{x})} \exp\left\{\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, \mathbf{x}_t)\right\}$$

Training: convex optimization e.g. SGD + EM-algorithm

Inference (decoding): analogue to Viterbi algorithm

Feature engineering

- Categorical features
- Label-observation features
- Edge-observation and node-observation features
- Features from different time stamps
- Boundary labels
- Features as backoff
- Unsupported features
- ...

Linear chain CRF

Model:

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{t=1}^{T} \exp\left\{\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, \mathbf{x}_t)\right\}$$

- Undirected graphical model
- Conditional probability from HMM is equal to CRF with particular choice of feature functions
- Inference: e.g. belief propagation
- General case:

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{a=1}^{A} \Psi_a(\mathbf{y}_a, \mathbf{x}_a).$$

Models zoo summary

Common NLP sequence tasks

- Part-Of-Speech tagging (POS)
- Chunking (e.g. noun groups)
- Named Entity Recognition (NER)
- Word Sense Disambiguation (WSD)
- Syntax (shallow parsing)
- Semantic Slot Filling

. . .

POS tags (Penn Treebank)

CC	Coordinating conjunction	RB	Adverb		
CD	Cardinal number	RBR	Adverb, comparative		
CDT	Determiner	RBS	Adverb, superlative		
CEX	Existential there	RP	Particle		
CFW	Foreign word	SYM	Symbol		
IN	Preposition or subordinating conjunction	то	to		
JJ	Adjective	10	10		
JJR	Adjective, comparative	UH	Interjection		
JJS	Adjective, superlative	VB	Verb, base form		
LS	List item marker	VBD	Verb, past tense		
MD	Modal	VBG	Verb, gerund or present participle		
NN	Noun, singular or mass	VBN	Verb, past participle		
NNS	Noun, plural	VBP	Verb, non-3rd person singular present		
NNP	Proper noun, singular	VBZ	Verb, 3rd person singular present		
NNPS	Proper noun, plural	WDT	Wh-determiner		
PDT	Predeterminer	UUUUD			
POS	Possessive ending	W W P	wn-pronoun		
PRP	Personal pronoun	WRB	Wh-adverb		

NER tags (CoNLL 2003 shared task)

 $\mathcal{Y} = \{B-PER, I-PER, B-LOC, I-LOC, B-ORG, I-ORG, B-MISC, I-MISC, O\}$

U.N. official Ekeus heads for Baghdad.

PER, ORG, LOC, MISC labels + BIO-notation

Feature engineering

Table 2.2. A subset of observation functions $q_s(\mathbf{x},t)$ for the CoNLL 2003 Engilsh named-entity data, used by Mccallum and Li [86].

W=v	$w_t = v$	$\forall v \in \mathcal{V}$
T=j	part-of-speech tag for w_t is j (as determined by an automatic tagger)	$\forall \text{POS tags } j$
P=I-j	w_t is part of a phrase with syntactic type j (as determined by an automatic chunker)	
Capitalized	w_t matches [A-Z] [a-z]+	
Allcaps	w_t matches [A-Z] [A-Z]+	
EndsInDot	w_t matches [^\.]+.*\.	
	w_t contains a dash	
	w_t matches [A-Z]+[a-z]+[A-Z]+[a-z]	
Acro	w_t matches [A-Z] [A-Z\\.]*\\. [A-Z\\.]*	
Stopword	w_t appears in a hand-built list of stop words	
CountryCapital	w_t appears in list of capitals of countries	
:	many other lexicons and regular expressions	
$q_k(\mathbf{x}, t + \delta)$ for all	$1 \ k \ ext{and} \ \delta \in [-1,1]$	

Implementation details

CRF++	http://crfpp.sourceforge.net/
MALLET	http://mallet.cs.umass.edu/
GRMM	http://mallet.cs.umass.edu/grmm/
CRFSuite	http://www.chokkan.org/software/crfsuite/
FACTORIE	http://www.factorie.cc

Table 5.1. Scale of typical CRF applications in natural language processing.

Task	Parameters	Observation Functions	# Sequences	# Positions	Labels	Time (s)
NP chunking	248471	116731	8936	211727	3	958s
NER	187540	119265	946	204567	9	4866s
POS tagging	509951	127764	38219	912344	45	325500s

Practice (next time)

- POS-taggers in NLTK
- Viterbi algorithm
- Language modeling