Interdependence of clusters measures and distance distribution in compact metric spaces

Pushnyakov Alexey

MIPT

IDP-11, Barcelona, 2016

What is a good metric like?

- compactness principle: close objects should be in the same class rather than in different ones
- there are specific intra-cluster and inter-cluster distances
- metric space is a disjoint union of clusters separated one from each other
- if there are exactly k clusters then among every k + 1 points there exists two points form the same class

Problem statement

A compact metric space (X, ρ) with a Borel measure μ is considered.

Defenition

A measurable set of diameter at most r is called r-cluster.

Defenition

A family of 2*r*-clusters $\mathcal{X} = \{X_1, ..., X_k\}$ is called *r*-cluster structure of order *k* if $\rho(X_i, X_j) \ge r$ for all $1 \le i < j \le k$, where $\rho(A, B) = \inf\{\rho(x, y) : x \in A, y \in B\}$. By measure of cluster structure \mathcal{X} we mean value $\mu(\mathcal{X}) \stackrel{def}{=} \sum_{i=1}^{k} \mu(X_i)$.

Statement

There exists a r-cluster structure of order k of maximum measure.

・ 同 ト ・ ヨ ト ・ ヨ ト

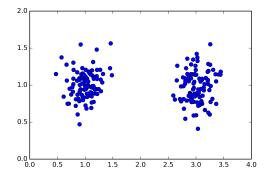
Restrictions for distance distribution

Let \mathcal{X}^* be a *r*-cluster structure of order *k* of maximum measure. If metric is good we have $\mu(\mathcal{X}^*) \approx \mu(X)$. What restriction should we impose to guarantee that $\mu(\mathcal{X})$ is close to $\mu(X)$?

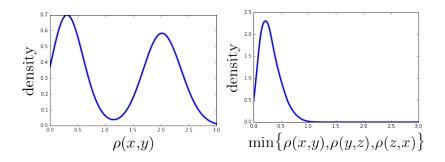
$$\rho(x,y) \in \begin{cases}
[0,r], & \text{short edge;} \\
(r,3r], & \text{medium edge;} \\
(3r,+\infty), & \text{long edge.}
\end{cases}$$

Anticlique of order k is a set k points such that there are not short edges between them.

$$\mu\{(x,y) \in X^2 \colon r < \rho(x,y) \leq 3r\} \leq \alpha \mu(X)^2$$
$$\mu\{(x_1,\ldots,x_{k+1}) \in X^{k+1} \colon \rho(x_i,x_j) > r, 1 \leq i < j \leq k+1\} \leq \beta \mu(X)^{k+1}$$



$$\begin{split} & X = X_1 \sqcup X_2 \\ & X_1 \sim \mathcal{N}(m_1, \sigma^2 I) \\ & X_2 \sim \mathcal{N}(m_2, \sigma^2 I) \\ & \sigma = 0.2, \ m_1 = (1, 1)^T, \ m_2 = (3, 1)^T \end{split}$$



Distributions of $\rho(x, y)$ and min{ $\rho(x, y), \rho(y, z), \rho(z, y)$ } have features described above.

Let a metric space X be finite and μ is uniform measure.

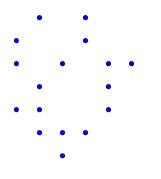
• Z_1, \ldots, Z_m are pairwise disjoint sets.

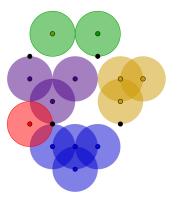
• Let X_{m+1} be 2*r*-cluster of maximum cardinality in $X \setminus \bigcup_{i=1}^{m} Z_i$.

• Z_{m+1} is *r*-neighborhood of X_{m+1} in $X \setminus \bigcup_{i=1}^{m} Z_i$:

$$Z_{m+1} = \left\{ x \in X \setminus \bigcup_{i=1}^m Z_i \colon \rho(x, X_{m+1}) < r \right\}$$

Greedy cluster structure





э

Defenition

The partition $X = \bigsqcup_{i=1}^{n} Z_i$ is called a greedy cluster partition and the family of 2*r*-clusters $\{X_1, \ldots, X_k\}$ is called a greedy *r*-cluster structure of order *k*.

Goal is to get the following bound

$$\sum_{i=1}^k |X_i| = (1+o(1))|X|, \alpha+\beta \to 0$$

Let σ be a permutation such that $|Z_{\sigma(1)}| \ge |Z_{\sigma(2)}| \ge \ldots$ and by defention $W_i = |Z_{\sigma(i)}|$.

•
$$\sum_{i=1}^{k} W_i \ge (1 + o(1))|X|$$

• $\sum_{i=1}^{k} (W_i - |X_{\sigma(i)}|) = o(1)|X|$

• generalize bound for a compact metric space.

(*) *) *) *)

Lower bound for anticliques

Let $T_s(i_1, ..., i_s)$ be number of *r*-anticliques of order *s* intersecting sets Z_{i_i} by exactly one point.

Statement

Assume $i_1 < \ldots < i_s$ and $s \geqslant 2$ then

$$T_s(i_1,\ldots,i_s) \geq \frac{|Z_{i_1}|}{s} T_{s-1}(i_2,\ldots,i_s)$$

$$T_{s}(i_{1},\ldots,i_{s}) \geq \frac{1}{s!} \prod_{j=1}^{s} |Z_{i_{j}}|$$
$$\sigma_{s}(y_{1},\ldots,y_{n}) \stackrel{\text{def}}{=} \sum_{1 \leq i_{1} < \ldots < i_{s} \leq n} \prod_{j=1}^{s} y_{j}$$
$$\sigma_{k+1}(W_{1},\ldots,W_{n}) \leq \beta |X|^{k+1}$$



→ ∃ → →

$$S(a) = \{x \in Z_1 \colon \rho(x, a) \leqslant r\}$$

Lower bound for $\sum_{i=1}^{k} W_i$

We obtain following optimization problem:

$$f(\mathbf{w}) = \sum_{j=1}^{k} w_j \to \min_{\mathbf{w}}$$

$$w_i \ge 0$$

$$w_i \ge w_j, \ i \le j$$

$$\sum_{i=1}^{n} w_i = 1$$

$$\sigma_{k+1}(w_1, \dots, w_n) \le c$$
(1)

Statement

If w is a solution of (1) and
$$w_k = \lambda > 0$$
 then $\mathbf{w} = (w_1, \underbrace{\lambda, \dots, \lambda}_{s}, \mu, 0, \dots, 0)$,
where $s \ge k - 1$ and $\mu < \lambda$.

$$\sum_{i=1}^{k} W_i \ge |X| \left(1 - (k+1)\beta^{\frac{1}{k+1}}\right)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

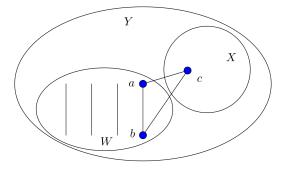
æ

Statement

Let (A, ρ) be a finite pseudometric space of diameter at most 3r and B is a 2r-cluster of maximum cardinality then number of medium edges M(A) no less than $\frac{1}{2}|A||A \setminus B|$.

- X_i is a 2*r*-cluster of maximum cardinality in Z_i .
- Diameter of Z_i might be equal 4r.
- Let M_i be a maximum matching of long edges covering the set $W_i \subset Z_i \setminus X_i$.
- By definition $Y_i = Z_i \setminus (X_i \cup W_i)$. Notice that $Y_i \cup X_i$ is a 3r-cluster.

Inner structure of greedy cluster structure



$$\max\{\rho(a, c), \rho(b, c)\} > r$$
$$M(Z_i) \ge \frac{1}{2}(|X_i| + |Y_i|)|Y_i| + \frac{1}{2}|W_i||X_i|$$

Statement

Let $T_s(Z_i)$ be number of r-anticliques of order s in Z_i and $s \ge 3$ then

$$T_s(Z_i) \ge \frac{1}{s}(|Z_i| - (s-1)|X_i|)_+ T_{s-1}(Z_i)$$

•
$$I_1 = \{i : |X_i|(k+1) \leq |Z_i|\}$$
:

$$\sum_{i\in I_1} |Z_i| \leqslant eketa^{rac{1}{k+1}}|X|$$

• $I_2 = \{i \notin I_1 \colon |Z_i| \ge \sqrt{\alpha}|X|\}$:

$$\sum_{i \in I_2} (|Z_i| - |X_i|) \leqslant \sqrt{\alpha}(k+1)|X|$$

Theorem

Let (X, ρ) be a finite pseudometirc, μ is uniform measure on X and \mathcal{X}^* is a r-cluster structure of maximum measure. If conditions

$$\mu\{(x,y)\in X^2\colon r<
ho(x,y)\leqslant 3r\}\leqslant lpha\mu(X)^2$$

and

$$\mu\{(x_1,\ldots,x_{k+1})\in X^{k+1}\colon \rho(x_i,x_j)>r\}\leqslant \beta\mu(X)^{k+1}$$

are satisfied then

 $\mu(\mathcal{X}^*) \geqslant \Psi(\alpha,\beta)|X|,$

where

$$\Psi(lpha,eta)=1-\sqrt{lpha}(2k+1)-(k(e+1)+1)eta^{rac{1}{k+1}}$$

Case of compact metric space

By given $\varepsilon > 0$ we construct a finite approximation $(X_{\varepsilon}, \rho_{\varepsilon})$ for (X, ρ) . • Let $\bigsqcup_{i=1}^{N_{\varepsilon}} A_i$ be a partition of X into ε -clusters. • $X_{\varepsilon} \stackrel{\text{def}}{=} \bigsqcup_{i=1}^{N_{\varepsilon}} B_i$ $\rho_{\varepsilon}(x, y) = \begin{cases} 0, & x, y \in B_i \\ \rho(A_i, A_j), & x \in B_i, y \in B_j, i \neq j \end{cases}$

• $|B_i|\mu(A_j) \approx |B_j|\mu(A_i)$

Theorem

Let (X, ρ) be a compact metric space, μ is Borel measure on X and \mathcal{X}^* is a r-cluster structure of maximum measure. If conditions

$$\mu\{(x,y)\in X^2\colon r<
ho(x,y)\leqslant 3r\}\leqslant lpha\mu(X)^2$$

and

$$\mu\{(x_1,\ldots,x_{k+1})\in X^{k+1}\colon \rho(x_i,x_j)>r\}\leqslant \beta\mu(X)^{k+1}$$

are satisfied then $\mu(\mathcal{X}^*) \ge \Psi(\alpha, \beta)|X|$