Измерение локальной эффективной функции роста в задачах поиска логических закономерностей

К. В. Воронцов

voron@ccas.ru
http://www.ccas.ru/voron

Москва Вычислительный Центр РАН

Задача обучения по прецедентам

- Восстановление зависимости $y^*: X \to Y$
- Выборка $X^l = \left\{x_1, ..., x_l\right\}$ с известными ответами $y^*(x_i)$
- *Метод обучения* отображение $\mu: X^l \mapsto a$, $a \in A$, где $A = \{a: X \to Y\}$ заданное семейство алгоритмов
- Частота ошибок алгоритма a на выборке X^l :

$$v(a,X^l) = \frac{1}{l} \sum_{i=1}^l I(a(x_i),y_i^*)$$
, где $I(y,y^*)$ — функция потерь.

Проблема:

Оценить обобщающую способность $v\left(\mu(X^l), X^k\right)$, где X^k — произвольная (неизвестная) выборка.

Функционалы обобщающей способности

Статистическая теория Вапника-Червоненкиса:

$$P_{\varepsilon}(A) = P_{X^k, X^l} \left\{ \sup_{a \in A} \left(v(a, X^k) - v(a, X^l) \right) > \varepsilon \right\}$$

Комбинаторная теория:

$$Q_{\varepsilon}(\mu,X^L)=rac{1}{N}\sum_{n=1}^N\Bigl[v(a_n,X_n^k)-v(a_n,X_n^l)>arepsilon\Bigr],$$
 где $a_n=\mu(X_n^l),$ $X^L=X_n^l\bigcup X_n^k,\ n=\overline{1,N}$ — всевозможные разбиения, $N=C_L^l,\ L=l+k$.

«Принцип соответствия»:

$$\underline{EQ_{\varepsilon}(\mu, X^{L})} = P_{X^{l}, X^{k}} \left\{ v \left(\mu(X^{l}), X^{k} \right) - v \left(\mu(X^{l}), X^{l} \right) > \varepsilon \right\} \leq P_{\varepsilon}(A).$$

Оценки обобщающей способности

$$P_{\varepsilon}(A) \leq \Delta^{A}(L) \cdot \exp\left(-2\varepsilon^{2} \frac{lk}{l+k}\right)$$

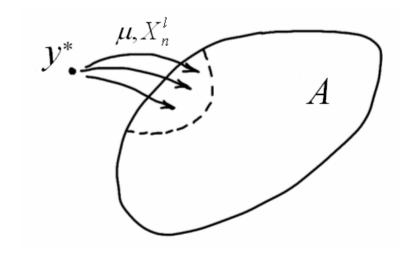
$$Q_{\varepsilon}(\mu, X^{L}) \leq \Delta^{L}_{L}(\mu, X^{L}) \cdot \Gamma^{L}_{L}(\varepsilon)$$

Новая мера сложности:

$$\Delta^A(L) = \max_{X^L} \# \left\{ I(a, x_i)_{i=1}^l \middle| a \in A \right\}$$
 — функция роста по Вапнику $\Delta^l_L(\mu, X^L) = \# \left\{ I(a_n, x_i)_{i=1}^l \middle| n = 1, ..., N \right\}$ — локальная ф. роста

Причины завышенности оценок Вапника-Червоненкиса:

- 1. Пренебрежение эффектом локализации
- 2. Погрешность экспоненциальной оценки
- 3. Погрешность разложения (переход от анализа качества к анализу сложности)



Преимущества комбинаторного подхода

- 1. Отказ от избыточно сильной аксиоматики:
 - принципа равномерной сходимости;
 - гипотезы i.i.d.
- 2. Учёт метода обучения μ позволяет описать эффект локализации \Rightarrow снимается «запрет на сложность»
- 3. Функционал $Q_{\varepsilon}(\mu, X^L)$ можно измерять:

$$egin{aligned} \widehat{Q}_{arepsilon}(\mu,X^L) &= rac{1}{|\widehat{N}|} \sum_{n \in \widehat{N}} \Bigl[v(a_n,X_n^k) - v(a_n,X_n^l) > arepsilon \Bigr], \end{aligned}$$
 где $a_n = \mu(X_n^l)$ $\widehat{N} \subset \{1,\dots,N\}$ — случайное подмножество разбиений

Понятие эффективной локальной функции роста

Теорема. Пусть $\mu(X^l) = a = \mathrm{const.}$ Тогда

$$Q_{arepsilon}(\mu,X^L) = \Gamma_L^l(arepsilon,m) = \sum_{s=0}^{\lceil (m-arepsilon k)l/L
ceil} rac{C_m^s C_{L-m}^{l-s}}{C_L^l}$$
, где $m = Lv(a,X^L)$.

Следствие (разновидность Закона Больших Чисел).

Пусть $\mu(X^l) = a = \text{const} \ \text{и} \ X^L - \text{i.i.d.}$ Тогда

$$EQ_{\varepsilon}(\mu, X^{L}) = P\{v(a, X^{k}) - v(a, X^{l}) > \varepsilon\} \leq \max_{m} \Gamma_{L}^{l}(\varepsilon, m) = \Gamma_{L}^{l}(\varepsilon).$$

Определение. Эффективная локальная функция роста:

$$Q_{\varepsilon}(\mu, X^L) = \Delta_{\text{эфф}}(\mu, X^L) \cdot \Gamma_L^l(\varepsilon, m)$$
, при некотором m .

- **Интерпретация 1.** △_{эфф} такой должна быть функция роста, чтобы оценка получалась не завышенной.
- **Интерпретация 2.** $\Delta_{\rm эфф}$ это не мера сложности, а коэффициент, показывающий, во сколько раз падает надёжность оценки $Q_{\varepsilon}(\mu,X^L)$ по сравнению с 3БЧ, вследствие переобучения.

Методика измерения эффективной локальной функции роста

1. Измеряется $\widehat{Q}_{\varepsilon}(\mu, X^L)$, оценивается доверительный интервал:

$$\hat{Q}_{\min} \leq \hat{Q}_{\varepsilon}(\mu, X^L) \leq \hat{Q}_{\max}$$

2. Поскольку m не известно, $\Gamma_L^l(\varepsilon,m)$ оценивается сверху и снизу.

Результат:

двусторонняя эмпирическая оценка локальной эффективной функции роста:

$$\frac{\widehat{Q}_{\min}}{\max_{m} \Gamma_{L}^{l}(\varepsilon, m)} \leq \Delta_{\sup \phi}(\mu, X^{L}) \leq \frac{\widehat{Q}_{\max}}{\min_{m} \Gamma_{L}^{l}(\varepsilon, m)}$$

Идея эксперимента

Оценить, какая из 3^х причин завышенности более существенна. Для этого:

- вычислить $\Delta^{A}(L)$ функцию роста по Вапнику;
- измерить $\Delta_L^l(\mu, X^L)$ локальную функцию роста;
- измерить $\widehat{Q}_{\varepsilon}(\mu, X^L)$;
- оценить $\Delta_{\text{эфф}}(\mu, X^L)$.

Тогда можно оценить факторы завышенности:

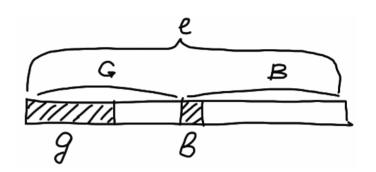
$$R_1 = \frac{\Delta^A(L)}{\Delta_L^l(\mu, X^L)}$$
 (пренебрежение эффектом локализации) $R_3 = \frac{\Delta_L^l(\mu, X^L)}{\Delta_{add}(\mu, X^L)}$ (погрешность разложения)

Осталось выбрать A и $\mu \dots$

Логические алгоритмы классификации

Логические закономерности класса $c \in Y$:

$$arphi_c: X o \{0,1\},$$
 $b(arphi_c)/g(arphi_c) \ll B/G$ $arphi_c$ — конъюнкции ранга $\leq K$



Частота ошибок закономерности φ_c :

$$v(\varphi_c, X^l) = \frac{1}{l} \sum_{i=1}^{l} [\varphi_c(x_i) \neq [y_i = c]]$$

Метод поиска закономерности по обучающей выборке:

$$\mu: X^l \to \varphi_c$$

Понятия обобщающей способности и функции роста легко распространяются на методы поиска закономерностей

Результаты измерения функции роста

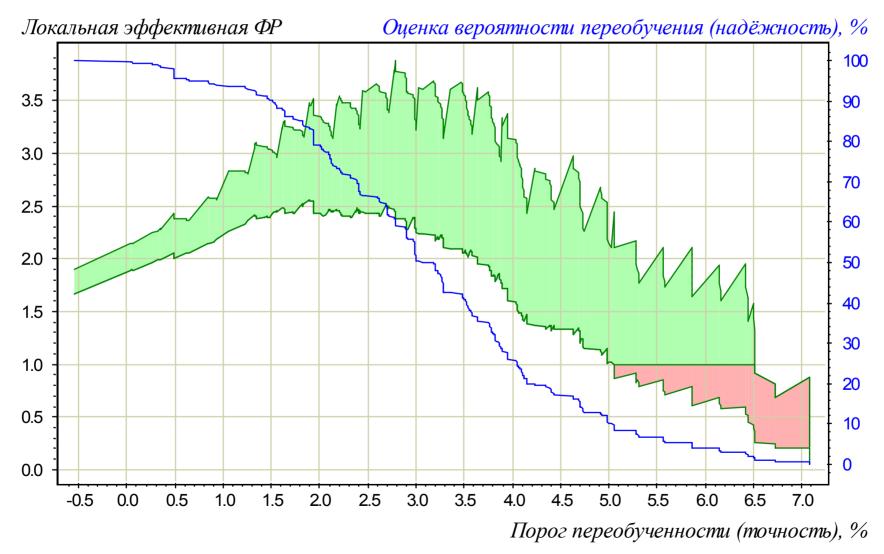
Задача*	число	число	объектов		Оценки функции роста**		
	признаков	термов	обуч.	тест	теорети-	локаль-	эмпири-
					ческие	ные	ческие
crx	15	1552	345	345	1.1·10 ¹¹	$3.5 \cdot 10^4$	3.9
german	24	531	500	500	5.7·10 ⁹	3.1·10 ⁴	1.5
hepatits	19	134	77	78	1.2·10 ⁸	1.8·10 ⁴	2.6
liver	6	885	172	173	$7.9 \cdot 10^{10}$	2.9·10 ⁴	12.1

^{*} Реальные задачи классификации из репозитория UCI

^{**} При ограничении на максимальный ранг конъюнкций *K*=5

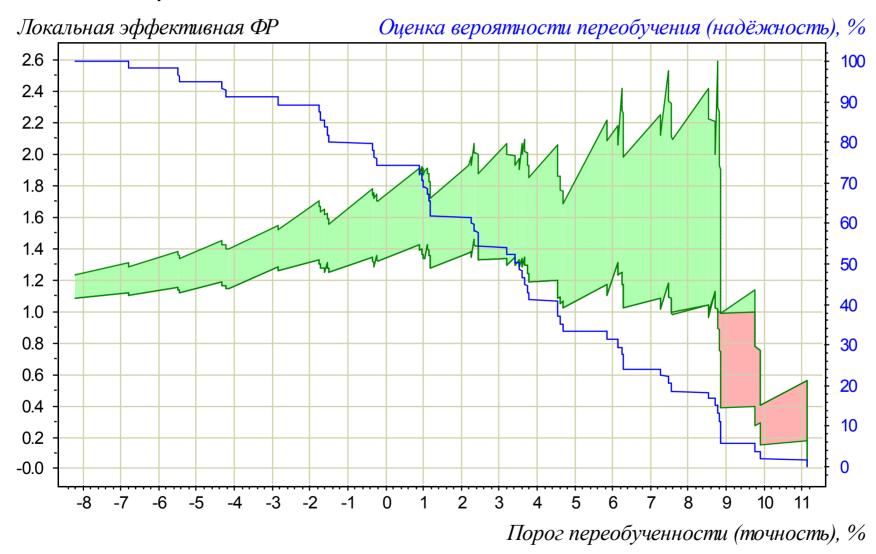
Зависимость э.л.ф.р. от параметра точности ε

Задача: сгх



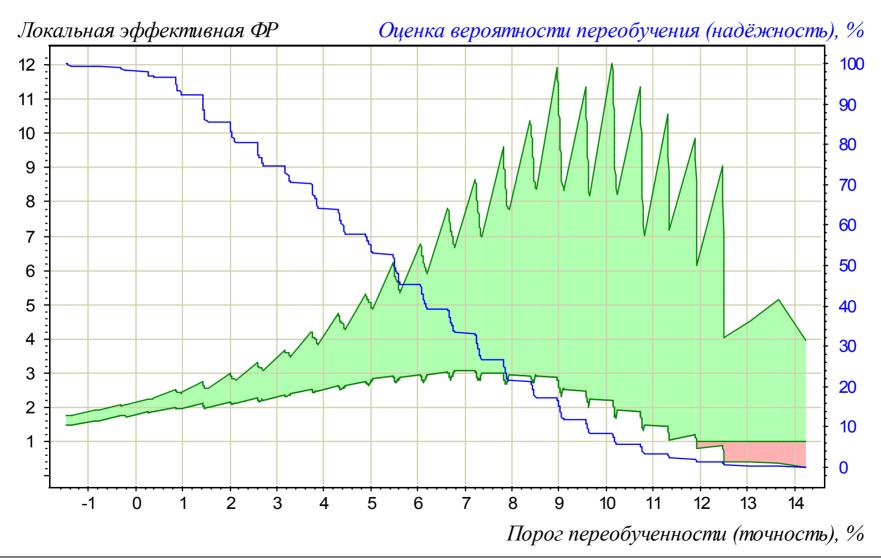
Зависимость э.л.ф.р. от параметра точности ε

Задача: hepatitis



Зависимость э.л.ф.р. от параметра точности ε

Задача: liver



Выводы

- 1. Существенны обе причины завышенности оценок ТВЧ:
 - пренебрежение эффектом локализации
 - погрешность разложения
- 2. В логических алгоритмах классификации э.л.ф.р. имеет порядок единицы на реальных задачах
- 3. Интерпретация:

если закономерности объективно проявляются в данных и если применяемый метод их находит, то переобучения почти нет, независимо от того, насколько сложно семейство

4. Данная методика позволяет вычислять поправку на переобучение при оценке вероятности ошибки отдельных правил