

Candidate Document Retrieval for Cross-Lingual Plagiarism Detection

Alexey Romanov, Anton Khritankov

Antiplagiat Research Moscow Institute of Physics and Technology

13 Oct 2016

Agenda

Cross-Language Plagiarism Detection Task Types of Text Reuse Cross-Language Plagiarism Detection Scheme

Problem Statement

Method Description Main Idea Algorithm Scheme Implementation Details

Experiments

Discussion

Conclusions

Antiplagiat Research

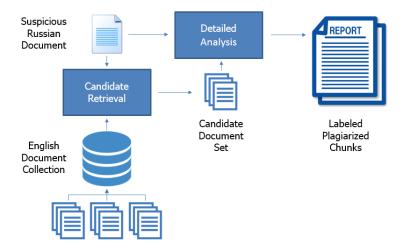
Text reuse (= "plagiarism") can be classified into several categories:

- copying text "as is"
- text reuse with paraphrasing
 - *Mr. Dursley always sat with his back to the window in his office on the ninth floor.*
 - *Mr. Dursley always propped his back on the glass window on the ninth floor of the office.*
- cross-language plagiarism
 - A cat was sitting on the table.
 - На столе сидела кошка.

Cross-language plagiarism detection tackles challenges of two tasks:

- Machine translation
- Paraphrase detection

Cross-Language Plagiarism Detection Scheme



Problem Statement: Applied Version

- Given: English document collection
- Given: Suspicious Russian document
- Relevance between a suspicious document and a source document is amount of reused text normalized by the suspicious document length.
- Task:
 - Find candidate documents, which allegedly contain reused text from the suspicious document, in the collection.
 - Rank these documents according to their relevance values.
- Collection size: 10⁶–10⁹ documents.
- Candidate set size: 10–100 documents.

Problem Statement: Formal Version

- $E = \{e_1, \ldots, e_n\}$ collection
- *d* suspicious document
- *φ*(*d*, *e*) relevance
- $R_k(\varphi, d) = (e_{i_1}, \dots, e_{i_k}) : \varphi(d, e_{i_1}) > \dots > \varphi(d, e_{i_k}),$ $\forall j : j \notin \{i_1, \dots, i_k\} \rightarrow \varphi(d, e_{i_k}) \ge \varphi(d, e_j)$ — ranked plagiarism source list
- Task: find custom φ' approximating φ in the sense of preserving the ranking R_k
 - $\begin{array}{l} & \text{best case of } \varphi' \text{:} \\ & \forall e_1, e_2 \in E \rightarrow \varphi(d, e_1) \geq \varphi(d, e_2) \Leftrightarrow \varphi'(d, e_1) \geq \varphi'(d, e_2) \end{array}$

Problem Statement: Formal Version

• $Rel(d) = \{e \in E \mid \varphi(d, d') > 0\}$ — source set for d

•
$$R_k(\varphi', d)$$
 — ranking by φ'

For test set of Russian documents $D = \{d_1, \ldots, d_m\}$:

$$Q(k,\varphi',D,E) = \frac{1}{|D|} \sum_{d \in D} \frac{|R_k(\varphi',d) \cap Rel(d)|}{|Rel(d)|}$$

• Let $k = k_0 \ge \max_{d \in D} |Rel(d)|$, then $Q(k_0, \varphi', D, E) \le 1$.

• Task:
$$Q(k_0, \varphi', D, E)
ightarrow \mathsf{max}_{\varphi'}$$

Method Description

- **Problem:** The majority of methods involve machine translation stage, which generates texts that differ too much from the sources of plagiarism.
 - Having considered the dimensions next the policy analyst has to identify various indicators for each dimension.
 - Having considered the size of the following political analyst should identify the different indicators for each measurement.
- **Idea:** Deal not with words but with word classes, which unite words and word forms that may be considered as translation of the same Russian phrases.
 - Obtain those word classes by clustering word embeddings on their cosine similarity.

Proposed Method: Word Embeddings

- Word embeddings (word2vec, GloVe etc.) are language modelling techniques of mapping words to vectors of real numbers.
- Vectors are learned by maximizing likelihood of certain words appearing in their contexts from the training data.
 - e.g. in word2vec skip-gram model:

$$\frac{1}{T}\sum_{t=1}^{T}\sum_{-c\leq j\leq c, j\neq 0}\log p(w_{t+j}|w_t) \to \max$$

for some training sequence of words w_1, \ldots, w_T

- words occurring in similar contexts get "cosine similar" vectors
- $cos(v_1, v_2) = \frac{(v_1, v_2)}{||v_1|| * ||v_2||}$

Proposed Method: Word Embedding Clustering

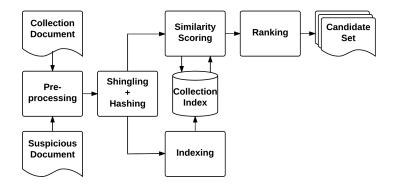
Example queries for closest words to the GloVe model (trained on 42B token Common Crawl corpus)

<pre>model.most_similar('plagiarism')</pre>	<pre>model.most_similar('detection')</pre>
<pre>[(u'dishonesty', 0.6062831878662109), (u'plagiarizing', 0.5256732106208801), (u'forgery', 0.5254061222076416), (u'plagarism', 0.5058314800262451), (u'plagiarized', 0.4934661090373993), (u'misconduct', 0.49346610906373993), (u'fraud', 0.48447954750606104), (u'trunitin', 0.47139039635658264), (u'tcheating', 0.46824273512268066)]</pre>	[(u'detecting', 0.7272850275039673), (u'detector', 0.715851366519928), (u'detectd', 0.6970372796058655), (u'detected', 0.6736979484558105), (u'detectors', 0.6247695684432983), (u'sensor', 0.6087626218795776), (u'detects', 0.6083689613342285), (u'monitoring', 0.59864061399231), (u'identification', 0.584608877182007), (u'sensig', 0.582802414894104)]

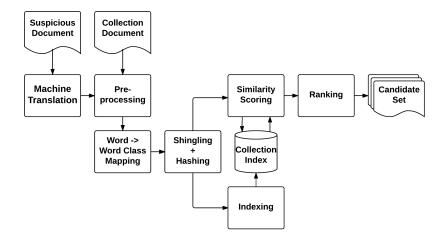
Cluster examples:

- [beer, beers, brewing, ale, brew, brewery, pint, stout, guinness, ipa, brewed, lager, ales, brews, pints, cask]
- [survey, assessment, evaluation, evaluate, examine, assess, surveys, analyze, evaluating, assessments, examining, analyzing, assessing, questionnaire, evaluations, analyse, questionnaires, analysing]
- [brilliant, excellent, exceptional, finest, outstanding, superb, terrific]

Proposed Method: Monolingual Shingle Search



Proposed Method: Cross-Lingual Shingle Search



Proposed Method: Implementation Details

- Most frequent hashes for the collection are not indexed
- Rare words are mapped to the single class
- Unknown words are removed
- Shingles sorted overlapping word 4-grams

•
$$\varphi'(\boldsymbol{d}, \boldsymbol{e}) = \sum_{\boldsymbol{h} \in \boldsymbol{H}(\boldsymbol{d})} \frac{\mathbb{1}[\boldsymbol{h} \in \boldsymbol{H}(\boldsymbol{e})]}{|\boldsymbol{e}': \boldsymbol{h} \in \boldsymbol{H}(\boldsymbol{e}')|}$$

- H(d) the set of document hashes
- allows on-the-fly computation

Experiments

Experiment #1

• Data:

- 1K sentence pairs from an English-Russian parallel corpus
- machine translation of the Russian sentences into English

Methods:

- simple shingling (without mapping words to word classes)
- shingling on word classes (proposed method)

• Performance measures:

- q_{hash} ratio of common hashes
- q_{sent} ratio of sentences where a common hash exists

Method	q _{hash}	q _{sent}
simple shingling	0.185	0.753
word-class shingling	0.221	0.796

Experiment #2: Data

• PAN'11 corpus:

- 11K source documents + 11K suspicious documents
- language: English
- various plagiarism level:
 - length
 - limited number of sources
 - obfuscation: none / low / high
- high obfuscation examples:
 - Christophe took her hands in his, kissed her, scolded her, spoke to her tenderly and roughly.
 - Christophe take her custody in his, had snog her, rebuke her, to her tenderly approximately.
- low obfuscation is similar to machine translation errors, suitable for testing of the method

Experiment #2: Performance

- Methods: shingling on word classes (proposed method)
- Performance measures:

$$Q(k,\varphi',D,E) = \frac{1}{|D|} \sum_{d \in D} \frac{|R_k(\varphi',d) \cap Rel(d)|}{|Rel(d)|}$$

Obfuscation	Q(k=5)	Q(k = 10)	Q(k = 25)
none	1.00	1.00	1.00
low	0.93	0.94	0.95
high	0.47	0.51	0.59

Experiments #3, #4

• Data:

- 17K English papers on sociological topic
- [Experiment #3] their machine-translated Russian versions
- *[Experiment #4]* authentic Russian sociological papers with plagiarized chunks
- Methods:
 - CL-ESA (Potthast, M., Stein, B. (2011))
 - shingling on word classes

Performance measures: Q(k, φ', D, E)

Experiment #3	Q(k=1)	Q(k=5)	Q(k = 10)
CL-ESA	0.31	0.48	0.55
word-class shingling	1.00	1.00	1.00
Experiment #4	Q(k=5)	Q(k = 10)	Q(k = 25)
word-class shingling	0.93	0.95	0.96

- Mapping of words to word classes enables smoothing of machine translation errors.
- CL-ESA (baseline) can be fooled by synonymic substitution and short plagiarized chunks.
- Errors of the proposed method result from:
 - plagiarized chunks of 1-2 sentences
 - archaic and rare words (kissed / had snog)
 - contextual synonyms (hands / custody)
 - synonyms used in different genres (*suffocation / asphyxiation*)

Conclusions

- Results of the study:
 - English word clustering
 - Method of candidate retrieval
 - Corpus of texts with cross-language text reuse
- The method can be applied to cross-language plagiarism detection task
- Further work may be aimed at:
 - enhancement of mapping to word classes
 - method parameter tuning
 - experiments on real-world data
 - scaling of the method to larger collections

Antiplagiat Research tackles the most challenging problems in the area of natural language processing and plagiarism detection.

- Development of advancing technology
- Propagation of scientific thought
- Unity of young talents from leading institutions
 - Moscow Phystech (MIPT)
 - Computing Centre of RAS
 - Moscow State University

We are looking for:

- talented researchers
- joint studies
- consulting & mentorship opportunities

Areas of our interest:

- Cross-Language Plagiarism
- Paraphrase Detection
- Machine-Generated Text Detection
- Automatic Text Categorization
- Intelligent Search and Topic Search
- Author Profiling
- Smart Evaluation of Research Papers

Thanks for you attention! Questions / Comments?

> Alexey Romanov romanov@ap-team.ru

