Фильтрация и тематическое моделирование коллекции научных документов

Сергей Воронов

Научный руководитель: д.ф.-м.н. К.В.Воронцов

Московский физико-технический институт (государственный университет) Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

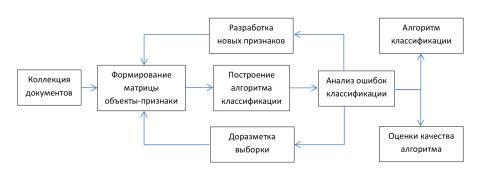
Москва, 2014 г.

Постановка задачи

- Конечная цель: создать систему тематического поиска научного контента в Интернете
- Цель данного исследования: разработать обучаемый алгоритм распознавания научных документов
- Сложность задачи:
 - Большой размер коллекции
 - ullet Несбалансированная выборка (научных документов $\leq 2\%$)
 - Изначально нет системы признаков
 - Изначально нет представительной обучающей выборки

Процесс разработки алгоритма классификации

Автоматизация процесса постепенного наращивания обучающей выборки, разработки признаков и улучшения классификатора.



Линейный классификатор с ненастраиваемыми весами

Линейный алгоритм классификации:

$$a(x,w) = \operatorname{sign}\left(\sum_{j=1}^n w_j f_j(x) - w_0\right),\,$$

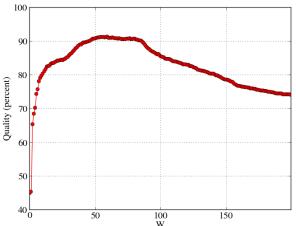
где w_i — вес j-го признака, w_0 — порог принятия решения, $w = (w_1, \dots, w_n)$ — вектор весов признаков.

В базовой необучаемой версии w_i задаются экспертом.

Использовался для разметки первоначальной выборки; после этого использовались SVM и регуляризованная логистическая регрессия.

Зависимость качества базового классификатора от w_0

Качество — это доля верных классификаций.



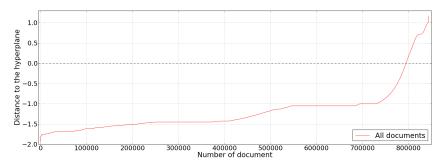
Вывод: слишком высокий процент ошибок.

Признаковое описание документов

- Число греческих букв в тексте
- Логарифм длины текста в символах
- Число математических символов в тексте
- Научные термины
- Типовые фразы, относящиеся к грантам («работа выполнена при поддержке РФФИ» и т.д.)
- Имена, часто встречающиеся в научных работах (именные теоремы, критерии, ...)
- Слова, относящиеся к оформлению (редактор, оппонент и т.д.)
- Минус-слова, присутствие которых понижает "научность" (количество часов, профком, экзамен)
- Длина текста (длина текста больше заданного порога)
- Число цифр в документе

Проблема несбалансированности выборки

Проблема: доля научных документов < 2% В обучающую выборку лучше брать объекты из граничной зоны



Решение: оценивать ошибку классификации по формуле

Хансена-Гурвица:
$$Avr(f) = \frac{1}{n} \sum_{d \sim p} f(d) \rightarrow Avr(f) = \frac{1}{n} \sum_{d \sim q} f(d) \frac{p(d)}{q(d)}$$
,

p(d) – изначальное распределение документов, q(d) – измененное.

SVM u RLR

Линейный алгоритм классификации:

$$a(x,w) = \operatorname{sign}\left(\sum_{j=1}^n w_j f_j(x) - w_0\right),\,$$

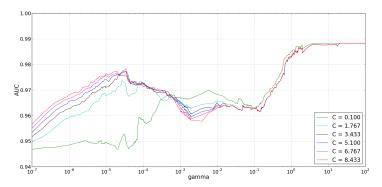
*w*_i определяются из условия:

SVM:
$$Q(w, w_0) = \sum_{i=1}^{m} (1 - y_i(\langle x_i, w \rangle - w_0))_+ + \frac{1}{2C} |w|^2 \to \min_{w, w_0}.$$

RLR:
$$Q(w) = \sum_{i=1}^{m} \ln (1 + \exp(-y_i \langle x_i, w \rangle)) + \frac{\lambda}{2} |w|^2 \rightarrow \min_{w}$$

Подбор параметров SVM

- ullet ядро rbf (радиальные базисные функции, $e^{-\gamma(x-x_0)^2}$)
- γ и C (штраф за неверную классификацию) по скользящему контролю



Оптимальные параметры: C>4 и $\gamma>10$.

Различные алгоритмы настройки весов RLR

• Градиентный спуск

$$w = w - \alpha \left(\frac{\partial Q(w)}{\partial w} \right)$$

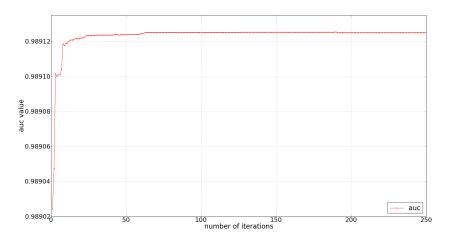
• Метод Ньютона

$$w = w - \alpha \left(\frac{\partial^2 Q(w)}{\partial w \partial w^T} \right)^{-1} \frac{\partial Q(w)}{\partial w}$$

• Метод Левенберга-Марквардта

$$w_i = w_i - \alpha \left(\mu + \frac{\partial^2 Q(w)}{\partial w_i \partial w_i} \right)^{-1} \frac{\partial Q(w)}{\partial w_i}$$

Настройка параметров LR (количество итераций)



Вывод: после 50 итераций не происходит существенного изменения AUC

Применение тематического моделирования

Один из информативных признаков — доля научных научных слов.

Проблема: сформировать словари научных слов вручную затруднительно.

Тривиальный подход: считать каждое слово за признак; затем сделать отбор признаков.

Проблема: большая трудоемкость (>70000 слов, встречающихся в нескольких документах).

Предлагаемый подход: автоматическая генерация признаков по обучающей коллекции методом тематического моделирования.

Тематическая модель классификации

Тематическая модель появления слов в документах:

$$p(w|d) = \sum_{t \in T} p(w|t)p(t|d) = \sum_{t \in T} \varphi_{wt}\theta_{td}$$

Тематическая модель классификации документов:

$$p(c|d) = \sum_{t \in T} p(c|t)p(t|d) = \sum_{t \in T} \psi_{ct}\theta_{td}$$

где c – класс, w – слово, t – тема, d – документ коллекции.

Задача максимизации регуляризованного правдоподобия

$$\sum_{d,w} n_{dw} \ln \sum_{t} \varphi_{wt} \theta_{td} + \tau \sum_{d,c} m_{dc} \ln \sum_{t} \psi_{ct} \theta_{td} + \sum_{i} \tau_{i} R_{i}(\Phi, \Psi, \Theta) \rightarrow \max$$

4 □ ▷ 〈□▷ 〈론▷ 〈론▷ 〈론 ▷ √)

Регуляризаторы

Аддитивная регуляризация тематической модели (ARTM):

• Разреживание:

$$R_1(\Phi) = -\beta \sum_{t \in T} \sum_{w \in W} \ln \varphi_{wt}$$

$$R_2(\Psi) = -\gamma \sum_{t \in T} \sum_{c \in C} \ln \psi_{ct}$$

$$R_3(\Theta) = -\alpha \sum_{t \in T} \sum_{c \in C} \ln \theta_{td}$$

• Ковариационный регуляризатор (повышение различности тем)

$$R(\Phi, \Psi, \Theta) = -\frac{\tau}{2} \sum_{t \in T} \sum_{s \in T \setminus t} cov(\varphi_t, \varphi_s)$$

EM-алгоритм для ARTM в матричной форме

Алгоритм 1 EM-алгоритм для ARTM, одна итерация, матричный вид

1:
$$\Phi_{new} = \Phi \otimes \left[N^T \oslash (\Phi \Theta) \right] \Theta^T$$

2:
$$\Psi_{new} = \Psi \otimes \left[M^T \oslash (\Psi \Theta) \right] \Theta^T$$

3:
$$\Theta_{new} = \Theta \otimes \Phi^T \Big[N^T \oslash (\Phi \Theta) \Big] + \tau \Theta \otimes \Psi^T \Big[M^T \oslash (\Psi \Theta) \Big]$$

- 4: Нормировка столбцов $\Phi_{new}, \Psi_{new}, \Theta_{new}$.
- 5: $\Omega = \sum_{t \in T} \varphi_{wt}$
- 6: Регуляризация Φ : $\Phi_{new} = (\Phi_{new} \beta 1_{W \times T} \eta \Phi \otimes [\Omega 1_{1 \times T} \Phi])_+$
- 7: Регуляризация $\Psi:\Psi_{new}=(\Psi_{new}-\gamma 1_{\mathcal{C}\times\mathcal{T}})_+$
- 8: Регуляризация $\Theta:\Theta_{new}=(\Theta_{new}-\alpha 1_{T\times D})_+$
- 9: Нормировка столбцов $\Phi_{new}, \Psi_{new}, \Theta_{new}$.

Примеры научных тем

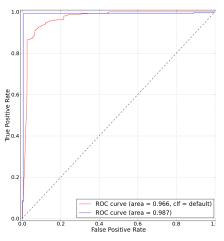
c = -1	0.495	0.544	0.983	0.932	1.000	0.117	1.000	0.605	
c = +1	0.505	0.456	0.017	0.068	0.000	0.883	0.000	0.395	

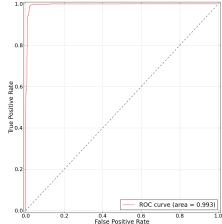
30-40 наиболее часто встречающихся в научной теме слов — признак. Примеры топа слов двух из отобранных научных тем:

p_w	w	
0.0575	система	
0.0450	рис	
0.0305	модель	
0.0299	функция	
0.0286	значение	
0.0284	параметр	
0.0235	характеристика	
0.0232	уравнение	
0.0230	процесс	
:		

p_w	w
0.0398	результат
0.0342	анализ
0.0296	вид
0.0296	исследование
0.0286	решение
0.0279	метод
0.0245	задача
0.0217	использование
0.0201	фактор
:	:

ROC-кривая для SVM и RLR (после добавления признаков)





Результаты

	Стадия работы	Ошибка	AUC
	Базовый классификатор	10,2%	-
	Базовая версия	9,6%	0,91
SVM	Настройка параметров	8,0%	0.93
	Признаки научных слов	7,4%	0.95
	Улучшение признаков	4,0%	0,983
	+ признаки из ТМ	3,7%	0.985
RLR	Градиентный спуск	5,0% (3,2–6,3)	0.981-0.991
	Метод Левенберга-Марквардта	4.6% (2,7–6.6)	0.983-0.992
	+ признаки из ТМ (гр. сп.)	5,2% (3,3–6,4)	0.976-0.994
	+ признаки из ТМ (Л-М)	4,0% (2,2-5,0)	0.985-0.996

Результаты, выносимые на защиту

- Разработана система признаков для линейной модели распознавания научных документов
- Предложен метод формирования словарных признаков на основе регуляризованной тематической модели
- Выполнена программная реализация и проведены численные эксперименты показавшие, что использование данных признаков улучшает качество классификации