AWS

Рыжков Александр

ВМК МГУ

30 марта 2015 года

AWS

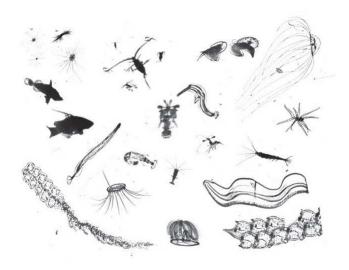
Содержание

- Постановка задачи
- Прикладные пакеты для Deep Learning
- 3 Amazon Web Services (AWS)
- Построение решения
 - Предобработка данных
 - Обучение моделей
 - Комбинирование моделей
- Выводы

Содержание

- 1 Постановка задачи
- Прикладные пакеты для Deep Learning
- 3 Amazon Web Services (AWS)
- 4 Построение решения
 - Предобработка данных
 - Обучение моделей
 - Комбинирование моделей
- Быводы

Тренировочная выборка — 30336 изображений


AWS

- Тестовая выборка 130400 изображений
- Таксономическая схема видов планктона
- Функционал MultiLogLoss:

$$MultiLogLoss = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \log(p_{ij}) \rightarrow \min_{p_{ij}}$$

Постановка задачи

Постановка

Выводы

Результат

Постановка

Completed • \$175,000 • 1,049 teams

National Data Science Bowl

Dashboard

12 harkmug

Private Leaderboard - National Data Science Bowl

This competition has completed. This leaderboard reflects the final standings. See someone using multiple accounts? # Arank Team Name * in the mone Entries Last Submission UTC (Best - Last Submission) O ≥ Deep Sea ≥ # * Happy Lantern Festival # * Mon. 16 Mar 2015 14:03:40 (-2.8h) Poisson Process #1.* 0.587967 Mon. 16 Mar 2015 23:54:04 (-0.9h) Junonia □Deepsea Challenger □ # 142 AuroraXie 32 Maxim Milakov Ilya Kostrikov old-ufo 0.613981 nagadomi C zzspar Biolab # Alexander Ryzhkov (MSU, Moscow, Russia) 0.620708 beile 0.625620

Содержание

- 1 Постановка задачи
- Прикладные пакеты для Deep Learning
- 3 Amazon Web Services (AWS)
- 4 Построение решения
 - Предобработка данных
 - Обучение моделей
 - Комбинирование моделей
- Быводы

- Caffe
- CXXNET v.2.0
- Torch (Lua)
- Theano
- Matconvnet
- Cuda-convnet2
- Nolearn/Lasagne
- . . .

Построение решения

- Разработчик Berkeley Vision and Learning Center (BVLC)
- Удобные утилиты для создания баз изображений, среднего изображений
- Классификации тестовых изображений:
 - predict.py
 - classification.ipynb
- Простое конфигурирование архитектуры сети и параметров обучающего алгоритма

AWS

CXXNET

Постановка

- Разработчики Bing Xu и Tiangi Chen
- Удобные утилиты для создания баз тренировочных и тестовых изображений
- Классификации тестовых изображений проходит сразу для всей базы
- Простое конфигурирование архитектуры сети и параметров обучающего алгоритма

Содержание

- 1 Постановка задачи
- Прикладные пакеты для Deep Learning
- 3 Amazon Web Services (AWS)
- 4 Построение решения
 - Предобработка данных
 - Обучение моделей
 - Комбинирование моделей
- Быводы

Amazon Web Services (AWS)

AWS

Построение решения

- Сервис с мощными серверами за небольшие деньги
- Можно сразу взять созданный и настроенный образ (АМІ)
- Меньшая нагрузка на свое железо
- Есть некоторые риски :)

Типы инстансов

- Т2 с повышаемой производительностью
- М3 сбалансированный вариант
- С4(3) вычислительные нагрузки
- R3 больше памяти
- G2 есть GPU
- I2 оптимизированные диски (SSD)
- HS1 высокая плотность хранения данных

Построение решения

Spot vs. Standard инстанс

- Spot:
 - Меньше стоят
 - Могут быть отключены в ЛЮБОЙ момент по цене

AWS

- Standard:
 - \circ Стоят pprox 10 раз больше
 - Отключаются пользователем
 - 12 есть только Standard

Spot история цен

Постановка

Выводы

Tips & Tricks

Постановка

- Чем больше заявок тем больше серверов
- Поставим цену больше изначально
- Стоит выбирать наиболее «спокойную» зону
- Сохранение диска при отключении сервера!
- Запуск задач на сервере:
 - Putty
 - Pytty + nohup + &

Содержание

- 1 Постановка задачи
- Прикладные пакеты для Deep Learning
- 3 Amazon Web Services (AWS)
- 4 Построение решения
 - Предобработка данных
 - Обучение моделей
 - Комбинирование моделей
- Быводы

Предобработка данных

Объекты — изображения:

- Цвет
- Геометрия
- Морфология
- Комбинирование изображений

Варианты обработки:

- Online
- Offline

- Offline-трансформация
- Один размер с сохранением AR и без
- Повороты: 45° , 30° , 15° каждый раз к исходному файлу
- Морфология (эрозия + дилатация в каналах G и В)

AWS

Предобработка: победители

- Realtime-трансформация
- Повороты
- Сдвиги
- 3D трансформации
- Отражения
- Масштабирование

Предобработка: 10-е место

- Realtime-трансформация
- Переход к негативу
- Повороты
- Сдвиги
- 3D трансформации
- Отражения
- Масштабирование

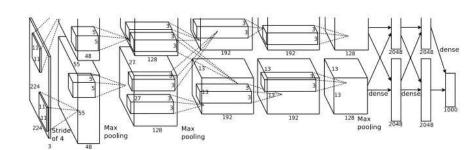
Обучение моделей

- Обязательное использование мощных GPU
- Победители: GTX 980, GTX 680 и Tesla K40 (12GB)
- 10-е место: x20 GRID K520 AWS
- Мои GPU: x2 GRID K520 AWS, GTX 650M

Мои модели

• 8-10 различных моделей CXXNET (96 × 96)

AWS


- 8–10 моделей типа AlexNet (256 × 256)
- Последовательное добавление слоев Dropout c увеличением threshold
- Уменьшение LearningRate для максимально близкого подхода к минимуму функционала

Модель CXXNET

- conv4–96
- maxpool
- conv3-192
- conv3–256
- maxpool
- flatten
- FC-2048
- FC-1024
- FC-121
- Soft-max

AlexNet

Модели победителей

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	-1	nput (224 × 2	24 RGB imag	e)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
			pool		A
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
	33	max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
CONTRACTOR DE LA CASA DA CASA DE CASA		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
			pool		
			4096		
			4096		
			1000		
		soft	-max		

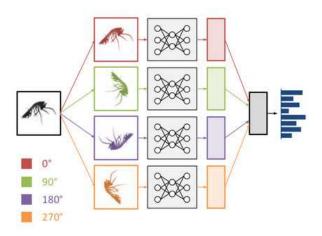
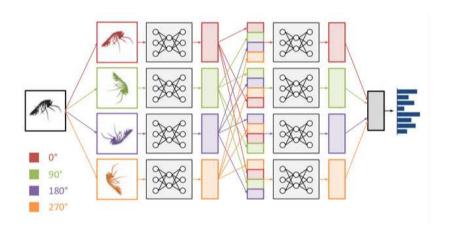

AWS

Table 2: Number of parameters (in millions).


Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

Модели победителей

Модели победителей

AWS

Leaky ReLU:

$$y = max(x, ax)$$

- Замена MaxPool на RootMeanSquarePool
- Разбиение выборки 90/10
- Использование связки CPU+GPU
- 3 стадии обучения с понижающимся LearningRate
- Попытка использования Pseudo-Labels
- Добавление признаков изображения внутрь сети

Siza

Построение решения

Outnut chane

Laver type

Layer type	Size	Output shape
cyclic slice		(128, 1, 95, 95)
convolution	32 3x3 filters	(128, 32, 95, 95)
convolution	16 3x3 filters	(128, 16, 95, 95)
max pooling	3x3, stride 2	(128, 16, 47, 47)
cyclic roll		(128, 64, 47, 47)
convolution	64 3x3 filters	(128, 64, 47, 47)
convolution	32 3x3 filters	(128, 32, 47, 47)
max pooling	3x3, stride 2	(128, 32, 23, 23)
cyclic roll		(128, 128, 23, 23)
convolution	128 3x3 filters	(128, 128, 23, 23)
convolution	128 3x3 filters	(128, 128, 23, 23)
convolution	64 3x3 filters	(128, 64, 23, 23)
max pooling	3x3, stride 2	(128, 64, 11, 11)
cyclic roll		(128, 256, 11, 11)
convolution	256 3x3 filters	(128, 256, 11, 11)
convolution	256 3x3 filters	(128, 256, 11, 11)
convolution	128 3x3 filters	(128, 128, 11, 11)
max pooling	3x3, stride 2	(128, 128, 5, 5)
cyclic roll		(128, 512, 5, 5)
fully connected	512 2-piece maxout u	nits (128, 512)
cyclic pooling (rm	s)	(32, 512)
fully connected	512 2-piece maxout u	nits (32, 512)
fully connected	121-way softmax	(32, 121)

00000000000000000

Комбинирование моделей

• Среднее арифметическое:

$$Y_{answer} = \frac{y_1 + y_2 + \dots + y_n}{n}$$

• Среднее геометрическое (теряется нормировка):

$$Y_{answer} = \sqrt[n]{y_1 \cdot y_2 \cdot \dots \cdot y_n}$$

Комбинирование моделей

- У меня:
 - Начало среднее арифметическое (2–5 моделей)
 - Середина среднее геометрическое (6–14 моделей)
 - Конец среднее арифметическое (15–20 моделей)
- Победители и 10-е место использовали взвешенную линейную комбинацию вида

$$Y_{answer} = w_1y_1 + w_2y_2 + \cdots + w_ny_n + Const,$$

посчитанные по небольшой валидационной выборке (5% от всех данных)

Еще больше идей:

Постановка

- Использование комбинации моделей, обученных на данных с сохранением AR и без него
- Иерархическая структура комбинации:
 - 4 уровня иерархии
 - + Тренировка сетей-специалистов на меньшем числе меток
 - Прирост качества сопоставим с обычными методами комбинирования
 - Плохое взаимодействие с классами Unknown и Others

- Постановка задачи
- Прикладные пакеты для Deep Learning
- 3 Amazon Web Services (AWS)
- 4 Построение решения
 - Предобработка данных
 - Обучение моделей
 - Комбинирование моделей
- Выводы

• Участвовать весело и интересно, но затратно по

- Необходимо пересмотреть все видео с лекциями от Hinton & Fergus
- Осилить множество статей с возможно-полезными результатами
- Dropout is awesome!

времени + \$\$\$

Выводы

Completed • \$175,000 • 1,049 teams

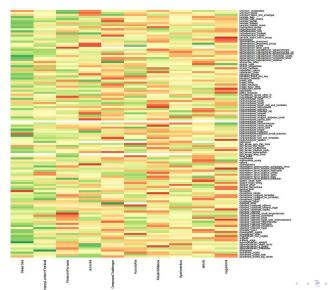
National Data Science Bowl

Mon 15 Dec 2014 - Mon 16 Mar 2015 (10 days ago)

Dashboard ▼ Priv

Private Leaderboard - National Data Science Bowl

This competition has completed. This leaderboard reflects the final standings.


See someone using multiple accounts? Let us know.

ø	Δrank	Team Name * In the money	Score @	Entries	Last Submission UTC (Best - Last Submission)
Ť	-	○ ≈ Deep Sea ≈ ル*	0.565971	96	Mon. 16 Mar 2015 17:32:03
2		Happy Lantern Festival 🗈 *	0.580300	150	Mon. 16 Mar 2015 14:03:40 (-2.8h)
3	-	Poisson Process & *	0.587967	134	Mon, 16 Mar 2015 23:54:04 (-0.9h)
4	12	Junonia	0.604112	59	Mon, 16 Mar 2015 20:24:47 (-19.5h)
5	-	□Deepsea Challenger□ 』	0.606921	142	Mon. 16 Mar 2015 19:47:18 (-3.3h)
6	12	AuroraXie	0.607333	32	Mon, 16 Mar 2015 22:15:07
7	11	Maxim Milakov	0.610072	27	Sat, 14 Mar 2015 18:36:14 (-0.8h)
8	(1	Ilya Kostrikov	0.610964	51	Mon, 16 Mar 2015 20:47:09 (-0.6h)
9	-	old-ufo	0.613981	82	Mon, 16 Mar 2015 21:23:27
10	12	nagadomi nagadomi	0.617123	31	Mon, 16 Mar 2015 05:57:34 (-0.4h)
11	12		0.619674	174	Mon, 16 Mar 2015 18:47:59 (-0.2h)
12	12	Biolab #	0.619722	74	Mon, 16 Mar 2015 14:50:21 (-3.2d)
13	12	Alexander Ryzhkov (MSU, Moscow, Russia)	0.620708	67	Mon, 16 Mar 2015 23:26:23 (-2.9h)
14	†1	beile	0.623529	28	Mon, 16 Mar 2015 21:01:15 (-0.2h)
15	12	harkmug	0.625620	28	Mon. 16 Mar 2015 20:42:44 (-4.9h)

Выводы

Постановка

Ссылки

• Блог победителей: http://benanne.github.io/2015/03/17/plankton.html

AWS

- 10-е место Nagadomi: https://github.com/nagadomi/kaggle-ndsb
- Другие идеи и решения: http://www.kaggle.com/c/datasciencebowl/forums/t/12930

Спасибо за внимание!!

AWS

Построение решения