
Deep	
Reinforcement	
Learning	with	
Memory
SERGEY	BARTUNOV,	HSE, 	MOSCOW

RL	basics

Markov	Decision	Process

Environment

Markov	Decision	Process

Environment

Markov	Decision	Process

Environment

Agent

Markov	Decision	Process

Environment

Agent

Markov	Decision	Process

Environment

Agent
state	𝑠"

Markov	Decision	Process

Environment

Agent
action	𝑎"

state	𝑠"

Markov	Decision	Process

Environment

Agent
action	𝑎"

state	𝑠"

reward	𝑟"

Markov	Decision	Process

Environment

Agent
action	𝑎"

state	𝑠"%&

reward	𝑟"

Markov	Decision	Process

Environment

Agent
action	𝑎"%&

state	𝑠"%&

reward	𝑟"%&

policy
𝑎"%&~𝜋(𝑎"%&|𝑠")

Markov	Decision	Process

Environment

Agent
action	𝑎"%&

state	𝑠"%&

reward	𝑟"%&

policy
𝑎"%&~𝜋(𝑎"%&|𝑠")

state	dynamics
𝑠"%&	~	𝑝(𝑠"%&|𝑠")

Markov	Decision	Process

Environment

Agent
action	𝑎"%&

state	𝑠"%&

reward	𝑟"%&

policy
𝑎"%&~𝜋(𝑎"%&|𝑠")

state	dynamics
𝑠"%&	~	𝑝(𝑠"%&|𝑠")

reward	structure
𝑟" = 𝑟(𝑠", 𝑎", 𝑠"%&)

Markov	Decision	Process
§ Trajectory	𝑠0, 𝑎0, 𝑠&, 𝑟0, 𝑎&,𝑠1, 𝑟&,…
§ 𝑠"%&	~	𝑝(𝑠"%&|𝑠")
§ 𝑎"	~	𝜋(𝑎"|𝑠")
§ 𝑟" = 𝑟(𝑠", 𝑎", 𝑠"%&)

Markov	Decision	Process
§ Trajectory	𝑠0, 𝑎0, 𝑠&, 𝑟0, 𝑎&,𝑠1, 𝑟&,…
§ 𝑠"%&	~	𝑝(𝑠"%&|𝑠")
§ 𝑎"	~	𝜋(𝑎"|𝑠")
§ 𝑟" = 𝑟(𝑠", 𝑎", 𝑠"%&)

§ Expected	return:	𝑅4 = 𝔼67:9,:7:9[∑ 𝛾"𝑟">
"?0]

Markov	Decision	Process
§ Trajectory	𝑠0, 𝑎0, 𝑠&, 𝑟0, 𝑎&,𝑠1, 𝑟&,…
§ 𝑠"%&	~	𝑝(𝑠"%&|𝑠")
§ 𝑎"	~	𝜋(𝑎"|𝑠")
§ 𝑟" = 𝑟(𝑠", 𝑎", 𝑠"%&)

§ Expected	return:	𝑅4 = 𝔼67:9,:7:9[∑ 𝛾"𝑟">
"?0]

§ Value	function:	𝑉4 𝑠" = 𝔼6B:9,:B:9[∑ 𝛾"%C𝑟"%C>
C?0]

Markov	Decision	Process
§ Trajectory	𝑠0, 𝑎0, 𝑠&, 𝑟0, 𝑎&,𝑠1, 𝑟&,…
§ 𝑠"%&	~	𝑝(𝑠"%&|𝑠")
§ 𝑎"	~	𝜋(𝑎"|𝑠")
§ 𝑟" = 𝑟(𝑠", 𝑎", 𝑠"%&)

§ Expected	return:	𝑅4 = 𝔼67:9,:7:9[∑ 𝛾"𝑟">
"?0]

§ Value	function:	𝑉4 𝑠" = 𝔼6B:9,:B:9[∑ 𝛾C𝑟"%C>
C?0]

§ Action-state	function:	𝑄4 𝑠", 𝑎" = 𝔼6B:9,:BE7:9[∑ 𝛾 C𝑟"%C>
C?0]

§ 𝑉4 𝑠" = 	𝔼:B		 𝑄
4 𝑠", 𝑎"

Bellman	equation	and	Value	iteration
§ 𝑉4 𝑠" = 𝑟" + 𝛾𝔼6BE7		 [𝑉

4 𝑠"%&]

§ 𝑄4 𝑠", 𝑎" = 𝑟" + 𝛾𝔼6BE7,:BE7	 [𝑄4 𝑠"%&, 𝑎"%&]

Bellman	equation	and	Value	iteration
§ 𝑉4 𝑠" = 𝑟" + 𝛾𝔼6BE7		 [𝑉

4 𝑠"%&]

§ 𝑄4 𝑠", 𝑎" = 𝑟" + 𝛾𝔼6BE7,:BE7	 [𝑄4 𝑠"%&, 𝑎"%&]

How	to	solve	MDP

1. Start	from	some	policy	𝜋

Bellman	equation	and	Value	iteration
§ 𝑉4 𝑠" = 𝑟" + 𝛾𝔼6BE7		 [𝑉

4 𝑠"%&]

§ 𝑄4 𝑠", 𝑎" = 𝑟" + 𝛾𝔼6BE7,:BE7	 [𝑄4 𝑠"%&, 𝑎"%&]

How	to	solve	MDP

1. Start	from	some	policy	𝜋
2. Evaluate	it	to	obtain	𝑄4

Bellman	equation	and	Value	iteration
§ 𝑉4 𝑠" = 𝑟" + 𝛾𝔼6BE7		 [𝑉

4 𝑠"%&]

§ 𝑄4 𝑠", 𝑎" = 𝑟" + 𝛾𝔼6BE7,:BE7	 [𝑄4 𝑠"%&, 𝑎"%&]

How	to	solve	MDP

1. Start	from	some	policy	𝜋
2. Evaluate	it	to	obtain	𝑄4

min
Q

E kQ(st, at)� rt � �Q(st+1, at+1)k2

Bellman	equation	and	Value	iteration
§ 𝑉4 𝑠" = 𝑟" + 𝛾𝔼6BE7		 [𝑉

4 𝑠"%&]

§ 𝑄4 𝑠", 𝑎" = 𝑟" + 𝛾𝔼6BE7,:BE7	 [𝑄4 𝑠"%&, 𝑎"%&]

How	to	solve	MDP

1. Start	from	some	policy	𝜋
2. Evaluate	it	to	obtain	𝑄4
3. Improve	𝜋 to	𝜋G

min
Q

E kQ(st, at)� rt � �Q(st+1, at+1)k2

Bellman	equation	and	Value	iteration
§ 𝑉4 𝑠" = 𝑟" + 𝛾𝔼6BE7		 [𝑉

4 𝑠"%&]

§ 𝑄4 𝑠", 𝑎" = 𝑟" + 𝛾𝔼6BE7,:BE7	 [𝑄4 𝑠"%&, 𝑎"%&]

How	to	solve	MDP

1. Start	from	some	policy	𝜋
2. Evaluate	it	to	obtain	𝑄4
3. Improve	𝜋 to	𝜋G ∶ ⇡0

(a|s) = argmax

a
Q⇡

(s, a)

min
Q

E kQ(st, at)� rt � �Q(st+1, at+1)k2

Bellman	equation	and	Value	iteration
§ 𝑉4 𝑠" = 𝑟" + 𝛾𝔼6BE7		 [𝑉

4 𝑠"%&]

§ 𝑄4 𝑠", 𝑎" = 𝑟" + 𝛾𝔼6BE7,:BE7	 [𝑄4 𝑠"%&, 𝑎"%&]

How	to	solve	MDP

1. Start	from	some	policy	𝜋
2. Evaluate	it	to	obtain	𝑄4
3. Improve	𝜋 to	𝜋G ∶
4. Repeat	until	convergence

⇡0
(a|s) = argmax

a
Q⇡

(s, a)

min
Q

E kQ(st, at)� rt � �Q(st+1, at+1)k2

Policy	gradients
§ Consider	a	parametric	policy	𝜋 𝑎 𝑠; 𝜃

Policy	gradients
§ Consider	a	parametric	policy	𝜋 𝑎 𝑠; 𝜃

§ Our	goal	is	to	maximize	the	expected	return:

R⇡
= Es0:T ,a0:T [

TX

t=0

�trt] ! max

✓

Policy	gradients
§ Consider	a	parametric	policy	𝜋 𝑎 𝑠; 𝜃

§ Our	goal	is	to	maximize	the	expected	return:

§ Policy	gradient	can	be	written	as	follows:

R⇡
= Es0:T ,a0:T [

TX

t=0

�trt] ! max

✓

r✓R
⇡
= Es0:T ,a0:T

"
TX

t=0

�t
T�tX

l=0

�lrt+lr✓ log ⇡(at|st; ✓)
#

Stochastic	approximation
§ Full	gradient:

r✓R⇡
= Es0:T ,a0:T

hPT
t=0 �

t
 tr✓ log ⇡(at|st; ✓)

i

Stochastic	approximation
§ Full	gradient:

§ Stochastic	estimate:		

r✓R⇡
= Es0:T ,a0:T

hPT
t=0 �

t
 tr✓ log ⇡(at|st; ✓)

i

er✓R⇡
=

PT
t=0 �

t
 tr✓ log ⇡(at|st; ✓), E

h
er✓R⇡

i
= r✓R⇡

Stochastic	approximation
§ Full	gradient:

§ Stochastic	estimate:		

§ Ψ" may	have	very	different	form:

r✓R⇡
= Es0:T ,a0:T

hPT
t=0 �

t
 tr✓ log ⇡(at|st; ✓)

i

er✓R⇡
=

PT
t=0 �

t
 tr✓ log ⇡(at|st; ✓), E

h
er✓R⇡

i
= r✓R⇡

Stochastic	approximation
§ Full	gradient:

§ Stochastic	estimate:		

§ Ψ" may	have	very	different	form:
§ ∑ 𝛾LM"𝑟L>

L?0

r✓R⇡
= Es0:T ,a0:T

hPT
t=0 �

t
 tr✓ log ⇡(at|st; ✓)

i

er✓R⇡
=

PT
t=0 �

t
 tr✓ log ⇡(at|st; ✓), E

h
er✓R⇡

i
= r✓R⇡

Stochastic	approximation
§ Full	gradient:

§ Stochastic	estimate:		

§ Ψ" may	have	very	different	form:
§ ∑ 𝛾LM"𝑟L>

L?0
§ ∑ 𝛾C𝑟"%C>M"

C?0

r✓R⇡
= Es0:T ,a0:T

hPT
t=0 �

t
 tr✓ log ⇡(at|st; ✓)

i

er✓R⇡
=

PT
t=0 �

t
 tr✓ log ⇡(at|st; ✓), E

h
er✓R⇡

i
= r✓R⇡

Stochastic	approximation
§ Full	gradient:

§ Stochastic	estimate:		

§ Ψ" may	have	very	different	form:
§ ∑ 𝛾LM"𝑟L>

L?0
§ ∑ 𝛾C𝑟"%C>M"

C?0
§ ∑ 𝛾C𝑟"%C>M"

C?0 − 𝑏(𝑠"),	where	𝑏(𝑠") is	a	baseline,	often	𝑏 𝑠" = 𝑉4(𝑠")

r✓R⇡
= Es0:T ,a0:T

hPT
t=0 �

t
 tr✓ log ⇡(at|st; ✓)

i

er✓R⇡
=

PT
t=0 �

t
 tr✓ log ⇡(at|st; ✓), E

h
er✓R⇡

i
= r✓R⇡

Stochastic	approximation
§ Full	gradient:

§ Stochastic	estimate:		

§ Ψ" may	have	very	different	form:
§ ∑ 𝛾LM"𝑟L>

L?0
§ ∑ 𝛾C𝑟"%C>M"

C?0
§ ∑ 𝛾C𝑟"%C>M"

C?0 − 𝑏(𝑠"),	where	𝑏(𝑠") is	a	baseline,	often	𝑏 𝑠" = 𝑉4(𝑠")
§ 𝑄4 𝑠", 𝑎" − 𝑉4(𝑠") – advantage	function,	 usually	intractable

r✓R⇡
= Es0:T ,a0:T

hPT
t=0 �

t
 tr✓ log ⇡(at|st; ✓)

i

er✓R⇡
=

PT
t=0 �

t
 tr✓ log ⇡(at|st; ✓), E

h
er✓R⇡

i
= r✓R⇡

Memory	problems

Markov	Decision	Process

Environment

Agent
action	𝑎"

state	𝑠"%&

reward	𝑟"

Partially-observable
Markov	Decision	Process

Environment

Agent
action	𝑎"

state	𝑠"%&

reward	𝑟"
Uncertainty

observation	𝑜"%&

Partially-observable
Markov	Decision	Process

Environment

Agent
action	𝑎"

state	𝑠"%&

reward	𝑟"
Uncertainty

observation	𝑜"%&

x,	y

Partially-observable
Markov	Decision	Process

Environment

Agent
action	𝑎"

state	𝑠"%&

reward	𝑟"
Uncertainty

observation	𝑜"%&

x,	y

PO-MDP	and	Memory
§ Trajectory	𝑠0, 𝑜0, 𝑎0, 𝑠&, 𝑟0, 𝑜&,𝑎&,𝑠1, 𝑟&, 𝑜1…
§ 𝑠"%&	~	𝑝(𝑠"%&|𝑠")
§ 𝑜"	~	𝑝(𝑜"|𝑠")
§ 𝑎"	~	𝜋 𝑎" 𝑜"
§ 𝑟" = 𝑟 𝑠", 𝑎", 𝑠"%&

PO-MDP	and	Memory
§ Trajectory	𝑠0, 𝑜0, 𝑎0, 𝑠&, 𝑟0, 𝑜&,𝑎&,𝑠1, 𝑟&, 𝑜1…
§ 𝑠"%&	~	𝑝(𝑠"%&|𝑠")
§ 𝑜"	~	𝑝(𝑜"|𝑠")
§ 𝑎"	~	𝜋 𝑎" 𝑜"
§ 𝑟" = 𝑟 𝑠", 𝑎", 𝑠"%&

§Memory	assumption:
§ there	exists	a	memory
§ such	that st ⇡ f(ot,mt)

mt = mem(mt�1, ot�1)

LSTM	Agent

𝑜0

𝑎0

𝑜&

𝑎&

𝑜1

𝑎1

𝑚0 𝑚& 𝑚1 …

at ⇠ ⇡(at|mt; ✓A)

mt = mem(mt�1, ot; ✓M)

Recurrent	policy	gradients
§ Stochastic	gradient	estimate:

§ Ψ" = ∑ 𝛾C𝑟"%C>M"
C?0

er✓R
⇡
=

PT
t=0 �

t
 tr✓ log ⇡(at|mt; ✓A), mt = mem(mt�1, ot; ✓M)

Recurrent	policy	gradients
§ Stochastic	gradient	estimate:

§ Ψ" = ∑ 𝛾C𝑟"%C>M"
C?0

§ Backpropagation through	time:

er✓R
⇡
=

PT
t=0 �

t
 tr✓ log ⇡(at|mt; ✓A), mt = mem(mt�1, ot; ✓M)

er✓MR⇡
=

TX

t=0

�t
 t

@ log ⇡(at|mt; ✓A)

@mt
Gt

Gt =
@mt

@✓M
+

@mt

@mt+1
Gt+1

§ High	variance	of	gradients
§ Usual	problems	with	

backpropagation through	 time
§ Exploding	/	vanishing	

gradients
§ Cannot	work	in	a	continuous	

settings

Variance	reduction
§ Stochastic	gradient	estimate:

§ Ψ" = ∑ 𝛾C𝑟"%C>M"
C?0 - easy	to	compute,	high	variance

§ Ψ" = ∑ 𝛾C𝑟"%C>M"
C?0 − 𝑏 𝑠" - baselined estimate

§ The	optimal	baseline	is	
𝔼[(∑ RSTBES9UB

SVW)(XYZ [\]4(:B| B̂))_]

𝔼[(∇YZ [\]4(:B|^B))_]

§ Another	important	case:𝑏 𝑠" = 𝑉4(𝑠")

er✓R
⇡
=

PT
t=0 �

t
 tr✓ log ⇡(at|mt; ✓), mt = mem(mt�1, ot; ✓)

Learning	the	Value	function

𝑜& 𝑜1 𝑜a

𝑚& 𝑚1 𝑚a …

at ⇠ ⇡(at|mt; ✓A)𝑎& 𝑎1 𝑎a

mt = mem(mt�1, ot; ✓M)

Learning	the	Value	function

𝑜& 𝑜1 𝑜a

𝑚& 𝑚1 𝑚a …

at ⇠ ⇡(at|mt; ✓A)𝑎& 𝑎1 𝑎a
𝑉& 𝑉1 𝑉a

mt = mem(mt�1, ot; ✓M)

Vt = V (mt; ✓V)

Final(?)	learning	algorithm
Repeat	until	convergence:

1. Collect	trajectory	{(𝑜", 𝑎", 𝑟")}"?0>

2. Update	policy	parameters	using	

3. Update	recurrent	parameters	using	BPTT

4. Update	baseline	parameters	using r✓V

PT
t=0(V (mV

t ; ✓V)�
PT

l=0 �
lrt+l)2

er✓R =

PT
t=0 �

t
 tr✓ log ⇡(at|m⇡

t ; ✓A)

Final(?)	learning	algorithm
Repeat	until	convergence:

1. Collect	trajectory	{(𝑜", 𝑎", 𝑟")}"?0>

2. Update	policy	parameters	using	

3. Update	recurrent	parameters	using	BPTT

4. Update	baseline	parameters	using

Actual	(wrong)	 objective:

𝔼 d𝛾"
>

"?0

𝑟" − 𝔼 dd 𝑟"%C − 𝑉(𝑚"; 𝜃e) 1
>M"

C?0

>

"?0

r✓V

PT
t=0(V (mV

t ; ✓V)�
PT

l=0 �
lrt+l)2

er✓R =

PT
t=0 �

t
 tr✓ log ⇡(at|m⇡

t ; ✓A)

Learning	LSTM	policies
§ Gradients	wrt recurrent	parameters	are	bad	after	K	steps
§ For	LSTM	K	is	larger	than	for	RNN,	but	still	a	finite	number

§ Continous setting	will	require	large	amount	of	memory

§ An	obvious	solution	is	to	truncate	BPTT	after	K	steps
§ This	limits	the	range	of	 learned	dependencies

§ Gradient	estimate:

§ Consider	our	advantage	estimator:

er✓R =

PT
t=0 tr✓ log ⇡(at|m⇡

t ; ✓A)

 t =
PT

l=0 �
lrt+l � V ⇡(st)

Eligibility	traces
§Gradient	estimate:

er✓R =

PT
t=0 �

t
 tr✓ log ⇡(at|m⇡

t ; ✓A)

Eligibility	traces
§Gradient	estimate:

§ Let’s	analyze	our	advantage	estimator

er✓R =

PT
t=0 �

t
 tr✓ log ⇡(at|m⇡

t ; ✓A)

 t =
TX

l=0

�lrt+l � V ⇡(st)

=
KX

l=0

�lrt+l +
TX

l=K+1

�lrt+l � V ⇡(st)

Eligibility	traces
§Gradient	estimate:

§ Let’s	analyze	our	advantage	estimator

§Without	changing	the	expectation	of	gradient	we	can	use

 t =
PK

l=0 �
lrt+l + �K V ⇡(st+K+1)| {z }

⇡V (mV
t+K+1;✓V)

�V (mV
t ; ✓V)

er✓R =

PT
t=0 �

t
 tr✓ log ⇡(at|m⇡

t ; ✓A)

 t =
TX

l=0

�lrt+l � V ⇡(st)

=
KX

l=0

�lrt+l +
TX

l=K+1

�lrt+l � V ⇡(st)

Bootstrapping	the	Baseline
§ New	error	function	for	the	Baseline	network

§Memory	dynamics	is	controlled	by	a	second	LSTM:

m

V
t = mem(mV

t�1, ot; ✓V)

TX

t=0

KX

l=0

�lrt+l + �KV (mV
t+K+1; ✓M)� V (mV

t ; ✓M)

!2

! min
✓V

Empirical	results

Latch	task

Latch	task

Latch	task

Latch	task
§ Sequences	of	length	100	are	already	hard	to	learn

Latch	task
§ Sequences	of	length	100	are	already	hard	to	learn

§ Eliglibility traces	work	sometimes,	but	not	very	stable

Latch	task
§ Sequences	of	length	100	are	already	hard	to	learn

§ Eliglibility traces	work	sometimes,	but	not	very	stable

§ Curriculum	learning:
§ Train	on	shorter	sequences
§ Increase	sequence	 length	over	time
§ Works	well	even	with	truncated	BPTT,	but	no	guarantees	

Rewards

Fruit 1 Fruit 2 Fruit 3

EAT	game

EAT	game

Rewards

Fruit 1 Fruit 2 Fruit 3

EAT	game

Rewards

Fruit 1 Fruit 2 Fruit 3

-1

EAT	game

Rewards

Fruit 1 Fruit 2 Fruit 3

-1

EAT	game

Rewards

Fruit 1 Fruit 2 Fruit 3

+1

EAT	game

Rewards

Fruit 1 Fruit 2 Fruit 3

+1

EAT	game

Rewards

Fruit 1 Fruit 2 Fruit 3

+1

EAT	game

Rewards

Fruit 1 Fruit 2 Fruit 3

+1

EAT	game

Rewards

Fruit 1 Fruit 2 Fruit 3

PASS

Eat	game
§ Given	enough	time	LSTM	can	learn	the	optimal	strategy

§ Variance	reduction	techniques	and	advances	optimization	methods	
dramatically	improve	convergence

Big	episode	EAT

Big	episode	EAT

Big	episode	EAT

Big	episode	EAT
§ This	environment	appeared	to	be	very	tough	for	the	LSTM	agent

Big	episode	EAT
§ This	environment	appeared	to	be	very	tough	for	the	LSTM	agent

§ Eligibility	traces	do	work,	but	achieve	80-90%	of	the	optimal	score
§ Couldn’t	approximate	the	Value	function	well

Big	episode	EAT
§ This	environment	appeared	to	be	very	tough	for	the	LSTM	agent

§ Eligibility	traces	do	work,	but	achieve	80-90%	of	the	optimal	score
§ Couldn’t	approximate	the	Value	function	well

§ The	number	of	contexts	is	the	main	bottleneck
§ Cannot	be	handled	by	curriculum	 learning	directly

Big	episode	EAT
§ This	environment	appeared	to	be	very	tough	for	the	LSTM	agent

§ Eligibility	traces	do	work,	but	achieve	80-90%	of	the	optimal	score
§ Couldn’t	approximate	the	Value	function	well

§ The	number	of	contexts	is	the	main	bottleneck
§ Cannot	be	handled	by	curriculum	 learning	directly

§ Dirty	trick	with	setting	Ψ" = 𝑟"	worked

§ Since	our	strategy	is	recurrent	future	rewards	influence	 gradients	at	time	t

§ Prone	to	bad	value	function

