Deep
 Reinforcement Learning with Memory

sergey bartunov, hSE, MOSCOW

RL basics

Markov Decision Process

Environment

Markov Decision Process

Markov Decision Process

Agent

Markov Decision Process

Agent

Markov Decision Process

Markov Decision Process

```
state dynamics
\(s_{t+1} \sim p\left(s_{t+1} \mid s_{t}\right)\)
```


Markov Decision Process

```
state dynamics
st+1}~~p(\mp@subsup{s}{t+1}{}|\mp@subsup{s}{t}{}
```

 state \(s_{t+1}\)

Agent

action a_{t+1}
reward structure $r_{t}=r\left(s_{t}, a_{t}, s_{t+1}\right)$

Markov Decision Process

- Trajectory $s_{0}, a_{0}, s_{1}, r_{0}, a_{1}, s_{2}, r_{1}, \ldots$
- $s_{t+1} \sim p\left(s_{t+1} \mid s_{t}\right)$
- $a_{t} \sim \pi\left(a_{t} \mid s_{t}\right)$
- $r_{t}=r\left(s_{t}, a_{t}, s_{t+1}\right)$

Markov Decision Process

- Trajectory $s_{0}, a_{0}, s_{1}, r_{0}, a_{1}, s_{2}, r_{1}, \ldots$
- $s_{t+1} \sim p\left(s_{t+1} \mid s_{t}\right)$
- $a_{t} \sim \pi\left(a_{t} \mid s_{t}\right)$
- $r_{t}=r\left(s_{t}, a_{t}, s_{t+1}\right)$
- Expected return: $R^{\pi}=\mathbb{E}_{S_{1: T}, a_{1: T}}\left[\sum_{t=0}^{T} \gamma^{t} r_{t}\right]$

Markov Decision Process

- Trajectory $s_{0}, a_{0}, s_{1}, r_{0}, a_{1}, s_{2}, r_{1}, \ldots$
- $s_{t+1} \sim p\left(s_{t+1} \mid s_{t}\right)$
- $a_{t} \sim \pi\left(a_{t} \mid s_{t}\right)$
- $r_{t}=r\left(s_{t}, a_{t}, s_{t+1}\right)$
- Expected return: $R^{\pi}=\mathbb{E}_{s_{1: T}, a_{1: T}}\left[\sum_{t=0}^{T} \gamma^{t} r_{t}\right]$
- Value function: $V^{\pi}\left(s_{t}\right)=\mathbb{E}_{S_{t: T}, a_{t: T}}\left[\sum_{l=0}^{T} \gamma^{t+l} r_{t+l}\right]$

Markov Decision Process

- Trajectory $s_{0}, a_{0}, s_{1}, r_{0}, a_{1}, s_{2}, r_{1}, \ldots$
- $s_{t+1} \sim p\left(s_{t+1} \mid s_{t}\right)$
- $a_{t} \sim \pi\left(a_{t} \mid s_{t}\right)$
- $r_{t}=r\left(s_{t}, a_{t}, s_{t+1}\right)$
- Expected return: $R^{\pi}=\mathbb{E}_{s_{1: T}, a_{1: T}}\left[\sum_{t=0}^{T} \gamma^{t} r_{t}\right]$
- Value function: $V^{\pi}\left(s_{t}\right)=\mathbb{E}_{s_{t: T}, a_{t: T}}\left[\sum_{l=0}^{T} \gamma^{l} r_{t+l}\right]$
- Action-state function: $Q^{\pi}\left(s_{t}, a_{t}\right)=\mathbb{E}_{s_{t: T}, a_{t+1: T}}\left[\sum_{l=0}^{T} \gamma^{l} r_{t+l}\right]$
- $V^{\pi}\left(s_{t}\right)=\mathbb{E} a_{t} Q^{\pi}\left(s_{t}, a_{t}\right)$

Bellman equation and Value iteration

- $V^{\pi}\left(s_{t}\right)=r_{t}+\gamma \mathbb{E}_{t+1}\left[V^{\pi}\left(s_{t+1}\right)\right]$
- $Q^{\pi}\left(s_{t}, a_{t}\right)=r_{t}+\gamma \mathbb{E}_{s_{t+1}, a_{t+1}}\left[Q^{\pi}\left(s_{t+1}, a_{t+1}\right)\right]$

Bellman equation and Value iteration

- $V^{\pi}\left(s_{t}\right)=r_{t}+\gamma \mathbb{E}_{t+1}\left[V^{\pi}\left(s_{t+1}\right)\right]$
- $Q^{\pi}\left(s_{t}, a_{t}\right)=r_{t}+\gamma \mathbb{E s}_{t+1}, a_{t+1}\left[Q^{\pi}\left(s_{t+1}, a_{t+1}\right)\right]$

How to solve MDP

1. Start from some policy π

Bellman equation and Value iteration

- $V^{\pi}\left(s_{t}\right)=r_{t}+\gamma \mathbb{E}_{t+1}\left[V^{\pi}\left(s_{t+1}\right)\right]$
- $Q^{\pi}\left(s_{t}, a_{t}\right)=r_{t}+\gamma \mathbb{E}_{t+1}, a_{t+1}\left[Q^{\pi}\left(s_{t+1}, a_{t+1}\right)\right]$

How to solve MDP

1. Start from some policy π
2. Evaluate it to obtain Q^{π}

Bellman equation and Value iteration

- $V^{\pi}\left(s_{t}\right)=r_{t}+\gamma \mathbb{E}_{t+1}\left[V^{\pi}\left(s_{t+1}\right)\right]$
- $Q^{\pi}\left(s_{t}, a_{t}\right)=r_{t}+\gamma \mathbb{E}_{t+1}, a_{t+1}\left[Q^{\pi}\left(s_{t+1}, a_{t+1}\right)\right]$

How to solve MDP

1. Start from some policy π
2. Evaluate it to obtain Q^{π}

Bellman equation and Value iteration

- $V^{\pi}\left(s_{t}\right)=r_{t}+\gamma \mathbb{E}_{t+1}\left[V^{\pi}\left(s_{t+1}\right)\right]$
- $Q^{\pi}\left(s_{t}, a_{t}\right)=r_{t}+\gamma \mathbb{E}_{t+1}, a_{t+1}\left[Q^{\pi}\left(s_{t+1}, a_{t+1}\right)\right]$

How to solve MDP

1. Start from some policy π
2. Evaluate it to obtain Q^{π}
3. Improve π to π^{\prime}

Bellman equation and Value iteration

- $V^{\pi}\left(s_{t}\right)=r_{t}+\gamma \mathbb{E}_{s_{t+1}}\left[V^{\pi}\left(s_{t+1}\right)\right]$
- $Q^{\pi}\left(s_{t}, a_{t}\right)=r_{t}+\gamma \mathbb{E}_{t+1}, a_{t+1}\left[Q^{\pi}\left(s_{t+1}, a_{t+1}\right)\right]$

How to solve MDP

1. Start from some policy π
2. Evaluate it to obtain Q^{π}
3. Improve π to $\pi^{\prime}: \pi^{\prime}(a \mid s)=\arg \max _{a} Q^{\pi}(s, a)$

Bellman equation and Value iteration

- $V^{\pi}\left(s_{t}\right)=r_{t}+\gamma \mathbb{E}_{s_{t+1}}\left[V^{\pi}\left(s_{t+1}\right)\right]$
- $Q^{\pi}\left(s_{t}, a_{t}\right)=r_{t}+\gamma \mathbb{E}_{t+1}, a_{t+1}\left[Q^{\pi}\left(s_{t+1}, a_{t+1}\right)\right]$

How to solve MDP

1. Start from some policy π
2. Evaluate it to obtain Q^{π}
3. Improve π to $\pi^{\prime}: \pi^{\prime}(a \mid s)=\arg \max Q^{\pi}(s, a)$
4. Repeat until convergence

$$
\min _{Q} \mathbb{E}\left\|Q\left(s_{t}, a_{t}\right)-r_{t}-\gamma Q\left(s_{t+1}, a_{t+1}\right)\right\|^{2}
$$

Policy gradients

- Consider a parametric policy $\pi(a \mid s ; \theta)$

Policy gradients

- Consider a parametric policy $\pi(a \mid s ; \theta)$
- Our goal is to maximize the expected return:

$$
R^{\pi}=\mathbb{E}_{s_{0: T}, a_{0: T}}\left[\sum_{t=0}^{T} \gamma^{t} r_{t}\right] \rightarrow \max _{\theta}
$$

Policy gradients

- Consider a parametric policy $\pi(a \mid s ; \theta)$
- Our goal is to maximize the expected return:

$$
R^{\pi}=\mathbb{E}_{s_{0: T}, a_{0: T}}\left[\sum_{t=0}^{T} \gamma^{t} r_{t}\right] \rightarrow \max _{\theta}
$$

- Policy gradient can be written as follows:

$$
\nabla_{\theta} R^{\pi}=\mathbb{E}_{s_{0: T}, a_{0: T}}\left[\sum_{t=0}^{T} \gamma^{t} \sum_{l=0}^{T-t} \gamma^{l} r_{t+l} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right)\right]
$$

Stochastic approximation

- Full gradient:

$$
\nabla_{\theta} R^{\pi}=\mathbb{E}_{s_{0: T}, a_{0: T}}\left[\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right)\right]
$$

Stochastic approximation

- Full gradient:

$$
\nabla_{\theta} R^{\pi}=\mathbb{E}_{s_{0: T}, a_{0: T}}\left[\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right)\right]
$$

- Stochastic estimate:

$$
\tilde{\nabla}_{\theta} R^{\pi}=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right), \quad \mathbb{E}\left[\widetilde{\nabla}_{\theta} R^{\pi}\right]=\nabla_{\theta} R^{\pi}
$$

Stochastic approximation

- Full gradient:

$$
\nabla_{\theta} R^{\pi}=\mathbb{E}_{s_{0: T}, a_{0: T}}\left[\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right)\right]
$$

- Stochastic estimate:

$$
\tilde{\nabla}_{\theta} R^{\pi}=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right), \quad \mathbb{E}\left[\widetilde{\nabla}_{\theta} R^{\pi}\right]=\nabla_{\theta} R^{\pi}
$$

- Ψ_{t} may have very different form:

Stochastic approximation

- Full gradient:

$$
\nabla_{\theta} R^{\pi}=\mathbb{E}_{s_{0: T}, a_{0: T}}\left[\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right)\right]
$$

- Stochastic estimate:

$$
\tilde{\nabla}_{\theta} R^{\pi}=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right), \quad \mathbb{E}\left[\widetilde{\nabla}_{\theta} R^{\pi}\right]=\nabla_{\theta} R^{\pi}
$$

- Ψ_{t} may have very different form:
- $\sum_{k=0}^{T} \gamma^{k-t} r_{k}$

Stochastic approximation

- Full gradient:

$$
\nabla_{\theta} R^{\pi}=\mathbb{E}_{s_{0: T}, a_{0: T}}\left[\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right)\right]
$$

- Stochastic estimate:

$$
\tilde{\nabla}_{\theta} R^{\pi}=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right), \quad \mathbb{E}\left[\widetilde{\nabla}_{\theta} R^{\pi}\right]=\nabla_{\theta} R^{\pi}
$$

- Ψ_{t} may have very different form:
- $\sum_{k=0}^{T} \gamma^{k-t} r_{k}$
- $\sum_{l=0}^{T-t} \gamma^{l} r_{t+l}$

Stochastic approximation

- Full gradient:

$$
\nabla_{\theta} R^{\pi}=\mathbb{E}_{s_{0: T}, a_{0: T}}\left[\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right)\right]
$$

- Stochastic estimate:

$$
\tilde{\nabla}_{\theta} R^{\pi}=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right), \quad \mathbb{E}\left[\widetilde{\nabla}_{\theta} R^{\pi}\right]=\nabla_{\theta} R^{\pi}
$$

- Ψ_{t} may have very different form:
- $\sum_{k=0}^{T} \gamma^{k-t} r_{k}$
- $\sum_{l=0}^{T-t} \gamma^{l} r_{t+l}$
- $\sum_{l=0}^{T-t} \gamma^{l} r_{t+l}-b\left(s_{t}\right)$, where $b\left(s_{t}\right)$ is a baseline, often $b\left(s_{t}\right)=V^{\pi}\left(s_{t}\right)$

Stochastic approximation

- Full gradient:

$$
\nabla_{\theta} R^{\pi}=\mathbb{E}_{s_{0: T}, a_{0: T}}\left[\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right)\right]
$$

- Stochastic estimate:

$$
\tilde{\nabla}_{\theta} R^{\pi}=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta\right), \quad \mathbb{E}\left[\widetilde{\nabla}_{\theta} R^{\pi}\right]=\nabla_{\theta} R^{\pi}
$$

- Ψ_{t} may have very different form:
- $\sum_{k=0}^{T} \gamma^{k-t} r_{k}$
- $\sum_{l=0}^{T-t} \gamma^{l} r_{t+l}$
- $\sum_{l=0}^{T-t} \gamma^{l} r_{t+l}-b\left(s_{t}\right)$, where $b\left(s_{t}\right)$ is a baseline, often $b\left(s_{t}\right)=V^{\pi}\left(s_{t}\right)$
- $Q^{\pi}\left(s_{t}, a_{t}\right)-V^{\pi}\left(s_{t}\right)$-advantage function, usually intractable

Memory problems

Markov Decision Process

Partially-observable Markov Decision Process

Partially-observable Markov Decision Process

Partially-observable

 Markov Decision Process

PO-MDP and Memory

- Trajectory $s_{0}, o_{0}, a_{0}, s_{1}, r_{0}, o_{1}, a_{1}, s_{2}, r_{1}, o_{2} \ldots$
- $s_{t+1} \sim p\left(s_{t+1} \mid s_{t}\right)$
- $o_{t} \sim p\left(o_{t} \mid s_{t}\right)$
- $a_{t} \sim \pi\left(a_{t} \mid o_{t}\right)$
- $r_{t}=r\left(s_{t}, a_{t}, s_{t+1}\right)$

PO-MDP and Memory

- Trajectory $s_{0}, o_{0}, a_{0}, s_{1}, r_{0}, o_{1}, a_{1}, s_{2}, r_{1}, o_{2} \ldots$
- $s_{t+1} \sim p\left(s_{t+1} \mid s_{t}\right)$
- $o_{t} \sim p\left(o_{t} \mid s_{t}\right)$
- $a_{t} \sim \pi\left(a_{t} \mid o_{t}\right)$
- $r_{t}=r\left(s_{t}, a_{t}, s_{t+1}\right)$
- Memory assumption:
- there exists a memory $m_{t}=\operatorname{mem}\left(m_{t-1}, o_{t-1}\right)$
- such that $s_{t} \approx f\left(o_{t}, m_{t}\right)$

LSTM Agent

Recurrent policy gradients

- Stochastic gradient estimate:

$$
\begin{aligned}
& \widetilde{\nabla}_{\theta} R^{\pi}=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid m_{t} ; \theta_{A}\right), \quad m_{t}=\operatorname{mem}\left(m_{t-1}, o_{t} ; \theta_{M}\right) \\
& \Psi_{t}=\sum_{l=0}^{T-t} \gamma^{l} r_{t+l}
\end{aligned}
$$

Recurrent policy gradients

- Stochastic gradient estimate:

$$
\widetilde{\nabla}_{\theta} R^{\pi}=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid m_{t} ; \theta_{A}\right), \quad m_{t}=\operatorname{mem}\left(m_{t-1}, o_{t} ; \theta_{M}\right)
$$

- $\Psi_{t}=\sum_{l=0}^{T-t} \gamma^{l} r_{t+l}$
- Backpropagation through time:

$$
\begin{aligned}
\widetilde{\nabla}_{\theta_{M}} R^{\pi} & =\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \frac{\partial \log \pi\left(a_{t} \mid m_{t} ; \theta_{A}\right)}{\partial m_{t}} G_{t} \\
G_{t} & =\frac{\partial m_{t}}{\partial \theta_{M}}+\frac{\partial m_{t}}{\partial m_{t+1}} G_{t+1}
\end{aligned}
$$

Will this work out of box?

Will this work out of box?

Will this work out of box?

- High variance of gradients
- Usual problems with backpropagation through time
- Exploding / vanishing gradients
- Cannot work in a continuous settings

Variance reduction

- Stochastic gradient estimate:

$$
\widetilde{\nabla}_{\theta} R^{\pi}=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid m_{t} ; \theta\right), \quad m_{t}=\operatorname{mem}\left(m_{t-1}, o_{t} ; \theta\right)
$$

- $\Psi_{t}=\sum_{l=0}^{T-t} \gamma^{l} r_{t+l}$ - easy to compute, high variance
- $\Psi_{t}=\sum_{l=0}^{T-t} \gamma^{l} r_{t+l}-b\left(s_{t}\right)$ - baselined estimate
- The optimal baseline is $\frac{\mathbb{E}\left[\left(\sum_{l=0}^{T-t} \gamma^{l} r_{t+l}\right)\left(\nabla_{\theta_{j}} \log \pi\left(a_{t} \mid m_{t}\right)\right)^{2}\right]}{\mathbb{E}\left[\left(\nabla_{\theta_{j}} \log \pi\left(a_{t} \mid m_{t}\right)\right)^{2}\right]}$
- Another important case: $b\left(s_{t}\right)=V^{\pi}\left(s_{t}\right)$

Learning the Value function

Learning the Value function

Final(?) learning algorithm

Repeat until convergence:

1. Collect trajectory $\left\{\left(o_{t}, a_{t}, r_{t}\right)\right\}_{t=0}^{T}$
2. Update policy parameters using $\widetilde{\nabla}_{\theta} R=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid m_{t}^{\pi} ; \theta_{A}\right)$
3. Update recurrent parameters using BPTT
4. Update baseline parameters using $\nabla_{\theta_{V}} \sum_{t=0}^{T}\left(V\left(m_{t}^{V} ; \theta_{V}\right)-\sum_{l=0}^{T} \gamma^{l} r_{t+l}\right)^{2}$

Final(?) learning algorithm

Repeat until convergence:

1. Collect trajectory $\left\{\left(o_{t}, a_{t}, r_{t}\right)\right\}_{t=0}^{T}$
2. Update policy parameters using $\widetilde{\nabla}_{\theta} R=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid m_{t}^{\pi} ; \theta_{A}\right)$
3. Update recurrent parameters using BPTT
4. Update baseline parameters using $\nabla_{\theta_{V}} \sum_{t=0}^{T}\left(V\left(m_{t}^{V} ; \theta_{V}\right)-\sum_{l=0}^{T} \gamma^{l} r_{t+l}\right)^{2}$

Learning LSTM policies

- Gradients wrt recurrent parameters are bad after K steps
- For LSTM K is larger than for RNN, but still a finite number
- Continous setting will require large amount of memory
- An obvious solution is to truncate BPTT after K steps
- This limits the range of learned dependencies
- Gradient estimate:

$$
\widetilde{\nabla}_{\theta} R=\sum_{t=0}^{T} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid m_{t}^{\pi} ; \theta_{A}\right)
$$

- Consider our advantage estimator:

$$
\Psi_{t}=\sum_{l=0}^{T} \gamma^{l} r_{t+l}-V^{\pi}\left(s_{t}\right)
$$

Eligibility traces

Gradient estimate:

$$
\widetilde{\nabla}_{\theta} R=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid m_{t}^{\pi} ; \theta_{A}\right)
$$

Eligibility traces

-Gradient estimate:

$$
\widetilde{\nabla}_{\theta} R=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid m_{t}^{\pi} ; \theta_{A}\right)
$$

- Let's analyze our advantage estimator

$$
\begin{aligned}
\Psi_{t} & =\sum_{l=0}^{T} \gamma^{l} r_{t+l}-V^{\pi}\left(s_{t}\right) \\
& =\sum_{l=0}^{K} \gamma^{l} r_{t+l}+\sum_{l=K+1}^{T} \gamma^{l} r_{t+l}-V^{\pi}\left(s_{t}\right)
\end{aligned}
$$

Eligibility traces

-Gradient estimate:

$$
\widetilde{\nabla}_{\theta} R=\sum_{t=0}^{T} \gamma^{t} \Psi_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid m_{t}^{\pi} ; \theta_{A}\right)
$$

- Let's analyze our advantage estimator

$$
\begin{aligned}
\Psi_{t} & =\sum_{l=0}^{T} \gamma^{l} r_{t+l}-V^{\pi}\left(s_{t}\right) \\
& =\sum_{l=0}^{K} \gamma^{l} r_{t+l}+\sum_{l=K+1}^{T} \gamma^{l} r_{t+l}-V^{\pi}\left(s_{t}\right)
\end{aligned}
$$

- Without changing the expectation of gradient we can use

$$
\Psi_{t}=\sum_{l=0}^{K} \gamma^{l} r_{t+l}+\gamma^{K} \underbrace{V^{\pi}\left(s_{t+K+1}\right)}_{\approx V\left(m_{t+K+1} ; \theta_{V}\right)}-V\left(m_{t}^{V} ; \theta_{V}\right)
$$

Bootstrapping the Baseline

- New error function for the Baseline network

$$
\sum_{t=0}^{T}\left(\sum_{l=0}^{K} \gamma^{l} r_{t+l}+\gamma^{K} V\left(m_{t+K+1}^{V} ; \theta_{M}\right)-V\left(m_{t}^{V} ; \theta_{M}\right)\right)^{2} \rightarrow \min _{\theta_{V}}
$$

- Memory dynamics is controlled by a second LSTM:

$$
m_{t}^{V}=\operatorname{mem}\left(m_{t-1}^{V}, o_{t} ; \theta_{V}\right)
$$

Empirical results

Latch task

class + noise
noise class query reward 1.03 0.97 0.24 -0.92 1.2 1.123 -0.05 $?$

Latch task

Latch task

Latch task

- Sequences of length 100 are already hard to learn

Latch task

- Sequences of length 100 are already hard to learn
- Eliglibility traces work sometimes, but not very stable

Latch task

- Sequences of length 100 are already hard to learn
- Eliglibility traces work sometimes, but not very stable
- Curriculum learning:
- Train on shorter sequences
- Increase sequence length over time
- Works well even with truncated BPTT, but no guarantees

EAT game

Fruit 1 Fruit 2 Fruit 3

EAT game

Fruit $1 \quad$ Fruit $2 \quad$ Fruit 3

EAT game

Fruit $1 \quad$ Fruit $2 \quad$ Fruit 3

EAT game

Fruit $1 \quad$ Fruit $2 \quad$ Fruit 3

EAT game

Fruit $1 \quad$ Fruit $2 \quad$ Fruit 3

EAT game

Fruit $1 \quad$ Fruit $2 \quad$ Fruit 3

EAT game

Fruit 1 Fruit 2 Fruit 3

EAT game

Fruit 1 Fruit $2 \quad$ Fruit 3

EAT game

Eat game

- Given enough time LSTM can learn the optimal strategy
- Variance reduction techniques and advances optimization methods dramatically improve convergence

Big episode EAT

Fruit 1 Fruit 2 Fruit 3

Big episode EAT

Fruit 1 Fruit 2 Fruit 3

Big episode EAT

Fruit 1 Fruit 2 Fruit 3

Big episode EAT

- This environment appeared to be very tough for the LSTM agent

Big episode EAT

- This environment appeared to be very tough for the LSTM agent
- Eligibility traces do work, but achieve 80-90\% of the optimal score
- Couldn't approximate the Value function well

Big episode EAT

- This environment appeared to be very tough for the LSTM agent
- Eligibility traces do work, but achieve 80-90\% of the optimal score
- Couldn't approximate the Value function well
- The number of contexts is the main bottleneck
- Cannot be handled by curriculum learning directly

Big episode EAT

- This environment appeared to be very tough for the LSTM agent
- Eligibility traces do work, but achieve 80-90\% of the optimal score
- Couldn't approximate the Value function well
- The number of contexts is the main bottleneck
- Cannot be handled by curriculum learning directly
- Dirty trick with setting $\Psi_{t}=r_{t}$ worked
- Since our strategy is recurrent future rewards influence gradients at time t
- Prone to bad value function

