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Test bench for multiscale time series forecasting

The goal

is to create a test-bench, which makes an accurate and stable
forecast of a set of multi-scale time series.

The method

>

resample time series to construct autoregressive matrix,
generate features,

select features,

make multimodel,

compute the error.

The project compares models and their expert mixtures to
understand a role of each model in the adequate forecast.
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Multiscale data

Consider a large set of time series ® = {s(?)| g=1...,Q}.
Each real-valued time series s

s=[s1,..., Siveees st], si=s(ti), 0<ti < tmax

is a sequence of observations of some real-valued S|gnal s(t).

Each time series s(9) has its own sampling rate 7(9
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Resampling time series

Suppose that the observations s; = s(t;) of the signal s(t) are
sampled unevenly:

tr —t1
T-1

G:{tl,...,t-r}, ti £ i

To obtain evenly spaced observations:
1) select a new sampling rate 7y,
2) form the new grid

Gs={t1,..., Trs}, ti=t1+(i—1) 7

3) and approximate unobserved evenly-spaced values $§; = s(t;),
ti € Gs using the sampled observations s; = s(t;), t; € G.
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Time series forecasting
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Design matrix

Forecast is a mapping from p-dimensional objects space to
r-dimensional answers space.
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Forecasting problem

Regression problem is stated as follows:
§ = f(x, W), where W = arg min S(w|f(w,x),y).
w
The error function S(w|f(w, x), y) averages forecasting errors of
[xi|yi] over all segments i =1,...,m in the test set.
Types of forecasting errors:
» scale-dependent metrics: mean absolute error

MAE = = Z|s,y

> percentage-error metrics: (symmetrlc) mean absolute percent

" Mare = Z 50 smape - Z 25
vl 9+l
€ denotes residual vector
e=le1,...,e] =y — f(w,x)

for the forecast.
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Rolling validation
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Construct the validation vector x

*
val, k

fzw t \ ty

validation

t

for time series of the

length At, as the first row of the design matrix Z,
construct the rest rows of the design matrix Z for the time
after t, and present it as

Xval, k
1xn
Xtrain,k

Mpin XN

Yval,k
Ixr
Ytrain,k

Mmin Xr

1,

optimize model parameters w using Xrain k; Ytrain k and
compute residues €y = Yyai k — f(Xval,, w) and MAPE,

increase k and repeat.

18



Gating function

Consider there are K models that are used to describe the data.

Gating function is mapping 7 : x — [0, 1], which shows the
likelihood of k-th model given vector x € X.

Gating function
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Mixture of Experts
Assume models fi, ..., fx with gaussian noise:
y = fi(x,w) + e,y ~ N(fi(x,w), Br).
Denote the vector of hyperparameters as 6:

- [le"'7WK7V7/8]

Likelihood of fx model on input (x,y) is p(k|x,w). Then the y
distribution looks like

K

K
p(y|x,0) = Zp(y, k|x,0) = Zp k|x,0)p(y|k,x,0) =
k=1 k=1

K

_ Z KeXP(V-lzx)T exp <_2;k(y _ fk(X, bW))2> )

1 D =1 exp(Vix)
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EM algorithm

Let 7, be the likelihood of fx on input x;, I = [yik]. The optimal
values of the hyperparameters can be estimated using two iterative
steps:

E-step: Fix wy,...,wg,V, 3 and recompute matrix

= [m(X),...,mx(X)].

M-step: Re-estimate the parameters using new values of ~y:

Vi = arg max E 7’“ In 7k (X, V),
i=1

_ r+1 _ 2
Wy = argmax [ Z'y fi(xi, wg)) ] ,

Bk = arg max [nlnﬂ Z — fk(x,-,wk))2] )

Tb\l—‘
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Gating fuction as NN

Instead of direct optimization of V using gradient methods Neural
network with 3 layers structure:

Model f = a(hp(...h1(x)))(w) contains autoencoders hy and
softmax classifier a:

W, X) = M a(x) = T an TX
f( ’ ) Zjexp(aj(x))’ ( ) W2t h(Wl )7

hi(x) = o(Wix + by),

where w minimizes the error function.
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Four linear experts fitting toy data
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omputational experiment
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The design matrix.

observations

features

Target variables for energy
consumption time series.
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Forecasting results
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Comparison with other models

Model Train MAE | Test MAE
Random Forest 6680.813 | 20213.763
MoE (RF-+Lin.reg) | 8613.395 17640.5
ElasticNet 68185.367 | 64458.609
Neural network 11274.041 | 14036.056

Model Train MAPE | Test MAPE
Random Forest 0.021 0.066
MoE (RF+Lin.reg) 0.026 0.057
ElasticNet 0.229 0.229
Neural network 0.035 0.046
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Conclusion

A framework for multiscale time-series forecast is suggested in this

paper. It allows to test different forecasting techniques on multiple

time-series.

Forecasting models are compared to each other and to their expert

mixtures. Result of comparison shows promising results.

Mixture of Experts approach development includes following steps:
» Enhance the convergence of gating function parameters to

reach global optimum.

» Consider neural networks of different structure as gating
function.
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