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Test bench for multiscale time series forecasting

The goal

is to create a test-bench, which makes an accurate and stable
forecast of a set of multi-scale time series.

The method

I resample time series to construct autoregressive matrix,

I generate features,

I select features,

I make multimodel,

I compute the error.

The project compares models and their expert mixtures to
understand a role of each model in the adequate forecast.
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Multiscale data

Consider a large set of time series D = {s(q)| q = 1 . . . ,Q}.
Each real-valued time series s

s = [s1, . . . , si , . . . , sT ], si = s(ti ), 0 ≤ ti ≤ tmax

is a sequence of observations of some real-valued signal s(t).

Each time series s(q) has its own sampling rate τ (q).

Days

Energy

Max T.

Min T.

Precipitation

Wind

Humidity

Solar

Energy

Solar

τ
′

τ

ti ti+1 t
′

i
= iτ

′ t
′

i+1

3 / 18



Resampling time series

Suppose that the observations si = s(ti ) of the signal s(t) are
sampled unevenly:

G = {t1, . . . , tT}, ti 6= i · tT − t1
T − 1

To obtain evenly spaced observations:

1) select a new sampling rate τrs,

2) form the new grid

Gs = {t1, . . . ,Trs}, ti = t1 + (i − 1) · τrs

3) and approximate unobserved evenly-spaced values ŝi = s(ti ),
ti ∈ Gs using the sampled observations si = s(ti ), ti ∈ G .
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Time series forecasting
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Design matrix

Forecast is a mapping from p-dimensional objects space to
r -dimensional answers space.

X∗ =

 x
1×n

y
1×r

X
m×n

Y
m×r


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Forecasting problem

Regression problem is stated as follows:

ŷ = f(x, ŵ),where ŵ = arg min
ŵ

S
(
w|f(w, x), y

)
.

The error function S
(
w|f(w, x), y

)
averages forecasting errors of

[xi |yi ] over all segments i = 1, . . . ,m in the test set.
Types of forecasting errors:

I scale-dependent metrics: mean absolute error

MAE =
1

r

r∑
j=1

|εj |,

I percentage-error metrics: (symmetric) mean absolute percent
error

MAPE =
1

r

r∑
j=1

|εj |
|yj |

, sMAPE =
1

r

r∑
j=1

2|εj |
|ŷj + yj |

,

ε denotes residual vector

ε = [ε1, . . . , εr ] = y − f(w, x)

for the forecast.
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Rolling validation

1) Construct the validation vector x∗val,k for time series of the
length ∆tr as the first row of the design matrix Z,

2) construct the rest rows of the design matrix Z for the time
after tk and present it as

Z =


. . . . . .

xval,k
1×n

yval,k
1×r

Xtrain,k
mmin×n

Ytrain,k
mmin×r

. . . . . .

 ,
x
k

3) optimize model parameters w using Xtrain,k ,Ytrain,k and
compute residues εk = yval,k − f(xvalk ,w) and MAPE,

4) increase k and repeat. 8 / 18



Gating function

Consider there are K models that are used to describe the data.
Gating function is mapping πk : x 7→ [0, 1], which shows the
likelihood of k-th model given vector x ∈ X.

Expert 1

Gating function

Expert 2

The gating function:

πk(x,V) =
exp(vT

kx)∑K
i=1 exp(vT

i x)
, V = [v1, . . . , vK ]
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Mixture of Experts

Assume models f1, . . . , fK with gaussian noise:

y = fk(x,w) + ε, y ∼ N (fk(x,w), βk).

Denote the vector of hyperparameters as θ:

θ = [w1, . . . ,wK ,V,β]

Likelihood of fk model on input (x, y) is p(k |x,w). Then the y
distribution looks like

p(y|x,θ) =
K∑

k=1

p(y, k|x,θ) =
K∑

k=1

p(k|x,θ)p(y |k , x,θ) =

=
K∑

k=1

exp(vT
kx)∑K

k ′=1 exp(vT
k ′x)

exp

(
− 1

2βk
(y − fk(x, bw))2

)
.
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EM algorithm

Let γik be the likelihood of fk on input xi , Γ = [γik ]. The optimal
values of the hyperparameters can be estimated using two iterative
steps:
E-step: Fix w1, . . . ,wK ,V,β and recompute matrix

Γ = [π1(X), . . . , πK (X)].

M-step: Re-estimate the parameters using new values of γik :

vk = arg max
v

m∑
i=1

γr+1
ik lnπk(xi , v),

wk = arg max
wk

[
−

m∑
i=1

γr+1
ik (yi − fk(xi ,wk))2

]
,

βk = arg max
β

[
n lnβ −

m∑
i=1

1

β
(yi − fk(xi ,wk))2

]
.
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Gating fuction as NN

Instead of direct optimization of V using gradient methods Neural
network with 3 layers structure:
Model f = a(hN(. . .h1(x)))(w) contains autoencoders hk and
softmax classifier a:

f(w, x) =
exp(a(x))∑
j exp(aj(x))

, a(x) = W
T

2tanh(W
T

1x),

hk(x) = σ(Wkx + bk),

where w minimizes the error function.
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Four linear experts fitting toy data
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Computational experiment

Data from Poland about energy consumption and weather
conditions in 2000-2004.
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The design matrix.

Target variables for energy
consumption time series.
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Comparison with other models

Model Train MAE Test MAE

Random Forest 6680.813 20213.763
MoE (RF+Lin.reg) 8613.395 17640.5

ElasticNet 68185.367 64458.609
Neural network 11274.041 14036.056

Model Train MAPE Test MAPE

Random Forest 0.021 0.066
MoE (RF+Lin.reg) 0.026 0.057

ElasticNet 0.229 0.229
Neural network 0.035 0.046
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Conclusion

A framework for multiscale time-series forecast is suggested in this
paper. It allows to test different forecasting techniques on multiple
time-series.
Forecasting models are compared to each other and to their expert
mixtures. Result of comparison shows promising results.
Mixture of Experts approach development includes following steps:

I Enhance the convergence of gating function parameters to
reach global optimum.

I Consider neural networks of different structure as gating
function.
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