Разработка метода стохастической оптимизации для задач машинного обучения с большими данными

Родоманов А. О.

научный руководитель: Ветров Д. П.

17 апреля 2015 г.

Оптимизация в машинном обучении

• Многие задачи сводятся к минимизации эмпирического риска:

$$F(\mathbf{w}) := \sum_{i=1}^{N} F_i(\mathbf{w}) \to \min_{\mathbf{w} \in \mathbb{R}^D}$$

ullet Например, логистическая регрессия с ℓ_2 -регуляризатором:

$$F_i(\mathbf{w}) := \ln(1 + \exp(-y_i \mathbf{w}^{\top} \mathbf{x}_i)) + \frac{\lambda}{2N} \|\mathbf{w}\|_2^2$$

- Считаем, что число объектов N очень большое.
- Рассматриваем методы, где сложность итерации не зависит от N.

Стохастические методы оптимизации

- Рассматриваем задачу минимизации $F(\mathbf{w}) := \sum_{i=1}^{N} F_i(\mathbf{w}).$
- Один из популярных методов метод стохастического градиента:
 - Выбрать случайный номер $i \in \{1, 2, \dots, N\}$ и вычислить

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \nabla \mathbf{F}_i(\mathbf{w}_k)$$

- Сублинейная скорость сходимости: O(1/k)
- Необходимость тонкого выбора параметров (например, α_k)
- Более эффективным методом является метод SAG:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \sum_{i=1}^N \mathbf{g}_i^k$$

- Каждый раз меняется одна случайно выбранная компонента \mathbf{g}_{i^*}
- $oldsymbol{\bullet}$ Память: $\mathbf{g}_i^k :=
 abla \mathbf{F}_i(\mathbf{v}_i^k)$, где \mathbf{v}_i^k последняя точка, где вычислялась F_i .
- Линейная скорость сходимости: $O(\rho^k)$, где $\rho \in (0,1)$
- Автоматическая процедура выбора параметров
- Цель работы: разработать метод, имеющий
 - суперлинейную скорость сходимости
 - не требующий ручной настройки параметров

Предлагаемый метод SO2

- Минимизируемая функция: $F(\mathbf{w}) := \sum_{i=1}^{N} F_i(\mathbf{w})$.
- Квадратичная модель для F_i с центром в точке \mathbf{v}_i^k :

$$Q_i^k(\mathbf{w}) := F_i(\mathbf{v}_i^k) + \nabla \mathbf{F}_i(\mathbf{v}_i^k)^\top (\mathbf{w} - \mathbf{v}_i^k) + \frac{1}{2} (\mathbf{w} - \mathbf{v}_i^k)^\top \nabla^2 \mathbf{F}_i(\mathbf{v}_i^k) (\mathbf{w} - \mathbf{v}_i^k)$$

- ullet Квадратичная модель полной функции $F: Q^k(\mathbf{w}) := \sum_{i=1}^N Q_i^k(\mathbf{w}).$
- \bullet Гессиан полной модели Q^k :

$$\mathbf{H}_k = \sum_{i=1}^N \nabla^2 \mathbf{F}_i(\mathbf{v}_i^k)$$

- Итерация метода:
 - Шаг Ньютона для полной модели Q^k :

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \mathbf{H}_k^{-1} \nabla \mathbf{Q}^k(\mathbf{w}_k),$$

- Обновление одной компоненты модели: $\mathbf{v}_{i}^{k+1} := \mathbf{w}_{k+1}$.
- Параметр α_k задает длину шага и обычно равен единице.

Эффективное обновление для линейных моделей

• Матрицу **H**_k можно хранить и обновлять в итерациях:

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \left(\nabla^2 \mathbf{F}_i(\mathbf{v}_i^{k+1}) - \nabla^2 \mathbf{F}_i(\mathbf{v}_i^k)\right)$$

- Чтобы не вычислять заново $abla^2 \mathbf{F}_i(\mathbf{v}_i^k)$, ее нужно хранить.
- Но тогда требуется слишком много памяти: $O(ND^2)$.
- Для линейных моделей $F_i(\mathbf{w}) := \phi_i(\mathbf{x}_i^\top \mathbf{w}).$
- ullet Гессиан $abla^2 \mathbf{F}_i(\mathbf{v}_i^k) = \phi_i''(\mathbf{x}_i^{ op}\mathbf{v}_i^k) \mathbf{x}_i \mathbf{x}_i^{ op}$: одноранговая матрица.
- Объекты обучающей выборки x; уже и так хранятся в памяти.
- ullet Значит, $abla^2 \mathbf{F}_i(\mathbf{v}_i^k)$ можно хранить неявно: храним $\sigma_i^k := \phi_i''(\mathbf{x}_i^{ op} \mathbf{v}_i^k)$.
- Суммарный объем памяти: $O(N + D^2)$.
- Аналогично можно хранить и обновлять градиент $abla \mathbf{Q}^k(\mathbf{w}_k)$.
- ullet Не решаем систему на каждой итерации: обновляем ${f B}_k:={f H}_k^{-1}.$
- Итоговая сложность обновления модели за итерацию: $O(D^2)$.

Теорема о суперлинейной сходимости

<u>Теорема (локальная скорость сх</u>одимости)

Пусть

- функции F_i являются дважды непрерывно дифференцируемыми
- ullet гессианы $abla^2 \mathbf{F}_i$ удовлетворяют условию Липшица: $\|
 abla^2 \mathbf{F}_i(\mathbf{w})
 abla^2 \mathbf{F}_i(\mathbf{u})\| \le B \|\mathbf{w} \mathbf{u}\|, \quad \forall \mathbf{w}, \mathbf{u} \in \mathbb{R}^D$

$$\| \mathbf{v} \cdot \mathbf{r}_{i}(\mathbf{w}) - \mathbf{v} \cdot \mathbf{r}_{i}(\mathbf{u}) \| \leq B \| \mathbf{w} - \mathbf{u} \|, \quad \forall \mathbf{w}, \mathbf{u} \in \mathbb{R}$$

- ullet Точка $oldsymbol{\mathbf{w}}_*$ есть лок. минимум функции F, причем $abla^2 \mathbf{F}(oldsymbol{\mathbf{w}}_*) \succ \mathbf{0}$
- Начальная точка метода \mathbf{w}_0 находится достаточно близко к \mathbf{w}_* :

$$\|\mathbf{w}_0 - \mathbf{w}_*\| \le (N^2 RB)^{-1}, \qquad R := \left\| \left(\nabla^2 \mathbf{F}(\mathbf{w}_*) \right)^{-1} \right\|$$

Тогда $\{\mathbf w_k\}_{k=0}^\infty$, построенная методом SO2, сходится к $\mathbf w_*$ суперлинейно:

$$\lim_{k \to \infty} \frac{\|\mathbf{w}_{k+1} - \mathbf{w}_*\|}{\|\mathbf{w}_k - \mathbf{w}_*\|} = 0$$

Более того, посл. каждых N-х точек сходится к точке \mathbf{w}_* квадратично:

$$\|\mathbf{w}_{k+N} - \mathbf{w}_*\| \le (N^2 RB) \|\mathbf{w}_k - \mathbf{w}_*\|^2$$

для всех k, начиная с некоторого номера.

Набросок доказательства

- Пусть $r_k := \|\mathbf{w}_k \mathbf{w}_*\|.$
- Справедлива следующая оценка:

$$r_k \le (NRB)(r_{k-1}^2 + r_{k-2}^2 + \dots + r_{k-N}^2)$$

- ullet Посл. $\{r_k\}$ является монотонно убывающей (с нек. номера).
- Отсюда N-шаговая квадратичная скорость сходимости:

$$r_k \le (N^2 RB) r_{k-N}^2$$

• Далее строится мажорирующая посл. $\{a_k\}$ для отношения r_{k+1}/r_k :

$$\frac{r_{k+1}}{r_k} \leq a_k,$$

где $a_k \to 0$ при $k \to \infty$.

• Из этой оценки следует суперлинейная скорость сходимости:

$$\frac{r_{k+1}}{r_k} \xrightarrow[k\to\infty]{} 0.$$

Сложность итерации и требуемая память

Минимизируемая функция: $\mathit{F}(\mathbf{w}) := \sum_{i=1}^{N} \phi_i(\mathbf{x}_i^{\top} \mathbf{w}).$

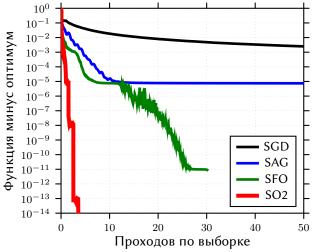
Метод	Сл. итерации	Память	Ск. сходимости	
			По итерац.	По эпохам
SGD	O(C+D)	O(D)	Сублин.	Сублин.
SAG	O(C+D)	O(N+D)	Линейная	Линейная
SO2	$O(C + D^2)$	$O(N+D^2)$	Суперлин.	Квадратич.

Обозначения:

- N: число объектов;
- D: число признаков;
- C: стоимость вычисления функции ϕ_i ;
- По эпохам означает каждую N-ую итерацию.

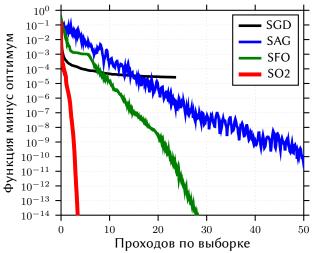
Эксперименты #1

- Оптимизируется логистическая регрессия с ℓ_2 -регуляризатором.
- Набор данных quantum ($N = 50\,000$, D = 78):



Эксперименты #2

- Оптимизируется логистическая регрессия с ℓ_2 -регуляризатором.
- Набор данных соvtype ($N = 581\,012,\, D = 54$):



Положения, выносимые на защиту

На защиту выносится:

- Метод оптимизации SO2.
- Теорема о локальной скорости сходимости метода SO2.
- Экспериментальное сравнение метода SO2 с другими методами.