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Bayesian networks

Bayesian networks are good for encoding distributions.
Problem: learning from scratch requires huge amounts of
computational resources and doesn’t guarantee good result.
Alternative: expert knowledge (still no guarantee, though).
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Verification

Problem:
Learned network may be of low quality.
Expert knowledge can be flawed.

Proposed verification proce-
dure:

Look at various marginal
distributions.
Use statistical testing to
check if they fit to data.
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Exploration procedure

1 Generate random Bayes net
2 Generate sample from this net
3 Extract subset distributions
4 Perform statistical testing

Repeat many times and examine false rejection portion.
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Where it all starts

P(X ) = P(x1, ..., xn) =
n∏

i=1

P(xi |x1, ..., xi−1) =

=
n∏

i=1

P(xi |Par(xi ))

Some scopes of each
factor may be dummy.
Graph is used to show
which ones are.
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Basic variable elimination method

We can simply sum variables out one by one.

∑
xk∈Dom(xk )

∏
i

P(xi |Par(xi )) =( ∏
{i :i 6=k,xk /∈Par(xi )}

[
P(xi |Par(xi ))

])
( ∑
{xk∈Dom(xk )}

[
P(xk |Par(xk))

∏
j :xk∈Par(xj )

(P(xj |Par(xj)))
])

xk

Par(xk)

Summation
scope
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Problems of variable elimination method

There are some drawbacks:

it has
exponential
complexity
we lose
bayesian
network ?
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Recovering Bayesian network structure

Assertion

Distribution P(X \ {z}) factorizes over a graph G ′, produced
from graph G by connecting every child c of removed vertex z
with all vertices of the summation scope, preceding c in some
fixed topological order.

z
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Algorithm for recomputing CPD

1 initialize P0 ← P(z |Par(z)), i ← 1
2 take next variable c in topological order from Child(z)

3 Pi = Pi−1P(c |Par(c)),
4 P(xc |P̃ar(xc)) =

∑
z Pi∑

z Pi−1
.

5 i ← i + 1
6 if there are still variables in Child(z) go to step 2;
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The idea of hypothesis testing

H0: zero hypothesis, "default".
H1: alternative.
S : statistic.
R : rejection region.
Idea: pick R so that P(S ∈ R|H0) < α(significance level).
p-value : minimal significance level that allows to reject
particular hypothesis.

R

P(S|H0)

P(S|H1)
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Pearson χ2 and g-Test

P - probability given H0
F - observed counts

P F
e1 Pe1 ne1
e2 Pe2 ne2

...
ek Pek nek∑

1 n

χ2 =
∑k

i=1
(nei−nPei

)2

nPei

G = 2
∑k

i=1 nPei log(
nPei
nei

)
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Figure: χ2distribution
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Multiple hypothesis testing

Coin tossing Food admixture

H0 Coin is fair Admixture affects
mice

H1 Coin is not fair Admixture does not
affect mice

Rejection Equal results of all
tosses

Specialized test pro-
cedure for some vital
signs in 2 groups of
mice

Procedure 1
OK

Throw N times. Measure one type of
vital signs

Procedure 2
Not OK

Make M people
throw N times each

Measure M types

Multiple hypothesis testing really makes a difference!
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Bonferroni correction

N hypotheses: H1
0 ,H

1
1 ; ...;H

N
0 ,H

N
1

N significance levels: α1; ...;αN

N rejection regions: R1; ...;RN

N statistics: S1; ...; SN

P(∨Ni=1(Si ∈ Ri ) ≤
N∑
i=1

P((Si ∈ Ri ))
R2

R4

R3 R1

Probability space

Idea: fix αi to be equal α/N.
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Stepwise correction procedures

sort hypotheses by p-values pk .
compare pk with α

N+1−k
reject all H i

0 : i ≤ r , where r is:
Holm step-down: r = min({k : pk >

α
N+1−k })− 1

Hochberg step-up: r = max({k : pk ≤ α
N+1−k })

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2 4 6 8 10

stepwise procedures
bonferroni

p-value
hochberg rejections

holm
bonferroni rejections

rejections

Figure: example of rejection procedures
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Random graphs - Erdős–Rényi

First formulation: each edge can be added to the graph
independently of others with probability p.
Second formulation: random set of k edges is chosen
uniformly at random.

Figure: 50 vertices, 100 edges
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Random graphs - Barabási–Albert

Procedure starts with fully connected graph with n vertices.
Each new vertex added to the graph is connected to n old
vertices.
Probability to chose a particular old vertex to connect to is
proportional to its degree.

Figure: 50 vertices, 97 edges
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Dirichlet and Beta distributions

Dirichlet distribution is a distribution over n-dimensional vectors
of positive numbers that sum to one - tabular distributions.

Dir(x , α) =
1

B(x)

K∏
i=1

xαi−1
i

2-dimensional case is
referred to as Beta-
distribution.

 0
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p(

x)
x

α = β = 0.1 
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Figure: Beta distribution
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χ2, 10 vertices, 9 edges,Dir(x , 1)

Erdős–Rényi Barabási–Albert, di-
rect order
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χ2, 10 vertices, 17-18 edges, Dir(x , 1)

Erdős–Rényi Barabási–Albert, in-
verse order
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Simple hypothesis testing experiment - 100 000
experiments, 100 samples per experiment
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Figure: binary distribution
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Figure: distribution with 4 values
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Figure: distribution with 8 values
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Figure: distribution with 16 values
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G − test, 10 vertices, 9 edges, Dir(x , 1)

Erdős–Rényi Barabási–Albert, ran-
dom order
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G − test, 10 vertices, 17-18 edges, Dir(x , 1)

Erdős–Rényi Barabási–Albert, ran-
dom order
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G − test, 10 vertices, 9 edges, Dir(x , 0.2)

Erdős–Rényi Barabási–Albert, ran-
dom order

Pairs

10
−5

10
−4

10
−3

10
−2

10
−1

10
−20

10
−15

10
−10

10
−5

10
0

siginficance

re
je

ct
io

n 
po

rt
io

n

fwer distribution  for pairs

 

 

bonferroni
holm
hochberg
reference

10
−5

10
−4

10
−3

10
−2

10
−1

10
−20

10
−15

10
−10

10
−5

10
0

siginficance

re
je

ct
io

n 
po

rt
io

n

fwer distribution  for pairs

 

 

bonferroni
holm
hochberg
reference

Triples

10
−5

10
−4

10
−3

10
−2

10
−1

10
−20

10
−15

10
−10

10
−5

10
0

siginficance

re
je

ct
io

n 
po

rt
io

n

fwer distribution  for triples

 

 

bonferroni
holm
hochberg
reference

10
−5

10
−4

10
−3

10
−2

10
−1

10
−20

10
−15

10
−10

10
−5

10
0

siginficance

re
je

ct
io

n 
po

rt
io

n

fwer distribution  for triples

 

 

bonferroni
holm
hochberg
reference



Problem
overview

Extracting
subset
distribution

Performing
hypothesis
testing

Generating
random
Bayesian net

Results

G − test, 10 vertices, 17-18 edges, Dir(x , 0.2)

Erdős–Rényi Barabási–Albert, ran-
dom order
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Conclusions

It’s much better to use g-Test than χ2 test.
It does not matter which correction procedure we choose.
Graph does not play a big role.
Strength of variable interdependence does play an
important role.
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