Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

An exploration of methods for verification of probability models based on Bayesian networks.

Pavel Novikov Supervised by: Oleg Senko

Moscow, 2015

Table of contents

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

1 Problem overview

2 Extracting subset distribution

3 Performing hypothesis testing

4 Generating random Bayesian net

5 Results

<ロト < 課 ト < 注 ト < 注 ト 三 三 のへで</p>

Bayesian networks

Problem overview

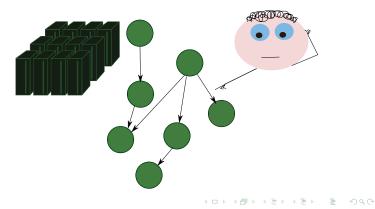
Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

- Bayesian networks are good for encoding distributions.
- Problem: learning from scratch requires huge amounts of computational resources and doesn't guarantee good result.
- Alternative: expert knowledge (still no guarantee, though).



Verification

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

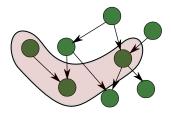
Results

Problem:

- Learned network may be of low quality.
- Expert knowledge can be flawed.

Proposed verification procedure:

- Look at various marginal distributions.
- Use statistical testing to check if they fit to data.



Exploration procedure

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

- 1 Generate random Bayes net
- 2 Generate sample from this net
- 3 Extract subset distributions
- 4 Perform statistical testing

Repeat many times and examine false rejection portion.

Table of contents

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

1 Problem overview

2 Extracting subset distribution

3 Performing hypothesis testing

4 Generating random Bayesian ne

5 Results

Where it all starts

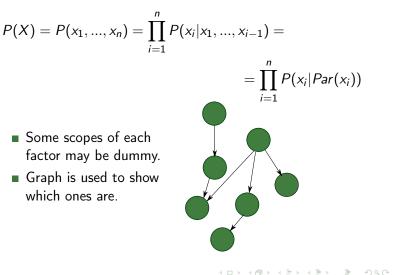
Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results



Basic variable elimination method

Problem overview

Extracting subset distribution

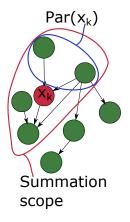
Performing hypothesis testing

Generating random Bayesian net

Results

We can simply sum variables out one by one.

$$\sum_{x_k \in Dom(x_k)} \prod_i P(x_i | Par(x_i)) = \left(\prod_{\{i:i \neq k, x_k \notin Par(x_i)\}} \left[P(x_i | Par(x_i)) \right] \right) \\ \left(\sum_{\{x_k \in Dom(x_k)\}} \left[P(x_k | Par(x_k)) \right] \\ \prod_{j:x_k \in Par(x_j)} \left(P(x_j | Par(x_j))) \right] \right)$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Problems of variable elimination method

Problem overview

Extracting subset distribution

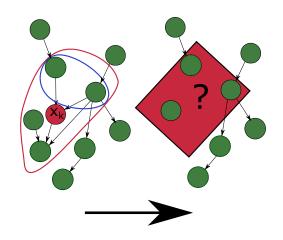
Performing hypothesis testing

Generating random Bayesian net

Results

There are some drawbacks:

- it has exponential complexity
- we lose
 bayesian
 network



▲ロト ▲屋ト ▲臣ト ▲臣ト 三臣 - のへで

Recovering Bayesian network structure

Problem overview

Extracting subset distribution

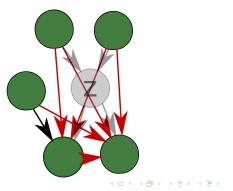
Performing hypothesis testing

Generating random Bayesian net

Results

Assertion

Distribution $P(X \setminus \{z\})$ factorizes over a graph G', produced from graph G by connecting every child c of removed vertex zwith all vertices of the summation scope, preceding c in some fixed topological order.



Algorithm for recomputing CPD

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

1 initialize $\mathcal{P}_0 \leftarrow P(z|Par(z)), i \leftarrow 1$

2 take next variable c in topological order from Child(z)

3
$$\mathcal{P}_i = \mathcal{P}_{i-1}P(c|Par(c)),$$

4 $P(x_c|\tilde{P}ar(x_c)) = \sum_{r=0}^{\infty} \frac{p_r}{r}$

$$P(x_c | Par(x_c)) = \frac{\sum_z P_i}{\sum_z P_{i-1}}.$$

5
$$i \leftarrow i + 1$$

6 if there are still variables in Child(z) go to step 2;

イロト 不同 トイヨト イヨト ヨー ろくの

Table of contents

Performing hypothesis testing

3 Performing hypothesis testing

The idea of hypothesis testing

Problem overview

Extracting subset distribution

Performing hypothesis testing

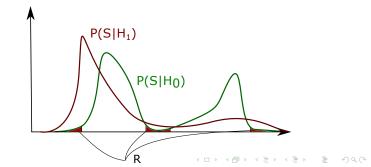
Generating random Bayesian net *H*₀: zero hypothesis, *"default"*. *H*₁: alternative.

S: statistic.

R: rejection region.

Idea: pick R so that $P(S \in R | H_0) < \alpha$ (significance level).

p-value : minimal significance level that allows to reject particular hypothesis.



Pearson χ^2 and g-Test

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

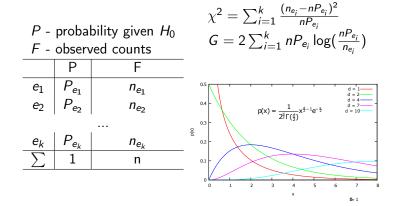


Figure: χ^2 distribution

Multiple hypothesis testing

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

	Coin tossing	Food admixture
H ₀	Coin is fair	Admixture affects mice
H ₁	Coin is not fair	Admixture does not affect mice
Rejection	Equal results of all tosses	Specialized test pro- cedure for some vital signs in 2 groups of mice
Procedure 1 OK	Throw N times.	Measure one type of vital signs
Procedure 2 Not OK	Make M people throw N times each	Measure M types

Multiple hypothesis testing really makes a difference!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Bonferroni correction

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

N hypotheses: $H_0^1, H_1^1; ...; H_0^N, H_1^N$ N significance levels: $\alpha^1; ...; \alpha^N$ N rejection regions: $R^1; ...; R^N$ N statistics: $S^1; ...; S^N$ $P(\bigvee_{i=1}^N (S_i \in R_i)) \leq \sum_{i=1}^N P((S_i \in R_i))$

Idea: fix α_i to be equal α/N .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Stepwise correction procedures

Problem overview

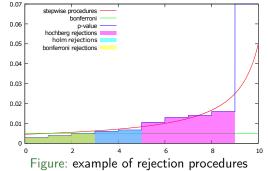
Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

- sort hypotheses by p-values p_k .
- compare p_k with $\frac{\alpha}{N+1-k}$
- reject all H_0^i : $i \leq r$, where r is:
- Holm step-down: $r = min(\{k : p_k > \frac{\alpha}{N+1-k}\}) 1$
- Hochberg step-up: $r = max(\{k : p_k \leq \frac{\alpha}{N+1-k}\})$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Table of contents

- Problem overview
- Extracting subset distribution
- Performing hypothesis testing
- Generating random Bayesian net
- Results

- 1 Problem overview
- 2 Extracting subset distribution
- 3 Performing hypothesis testing
- 4
- Generating random Bayesian net

5 Results

Random graphs - Erdős-Rényi

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

First formulation: each edge can be added to the graph independently of others with probability *p*. **Second formulation**: random set of *k* edges is chosen uniformly at random.

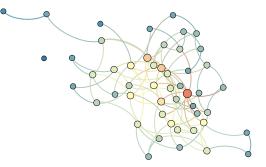


Figure: 50 vertices, 100 edges

Random graphs - Barabási–Albert

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

Procedure starts with fully connected graph with n vertices. Each new vertex added to the graph is connected to n old vertices.

Probability to chose a particular old vertex to connect to is proportional to its degree.

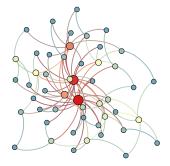


Figure: 50 vertices, 97 edges

◆□▶ ◆帰▶ ◆国▶ ◆国▶ - 国 - の久⊙

Dirichlet and Beta distributions

Problem overview

Extracting subset distribution

Performing hypothesis testing

Generating random Bayesian net

Results

Dirichlet distribution is a distribution over n-dimensional vectors of positive numbers that sum to one - tabular distributions.

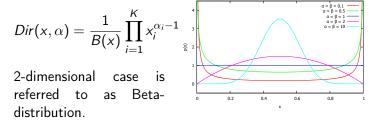


Figure: Beta distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Table of contents

- Problem overview
- Extracting subset distribution
- Performing hypothesis testing
- Generating random Bayesian net
- Results

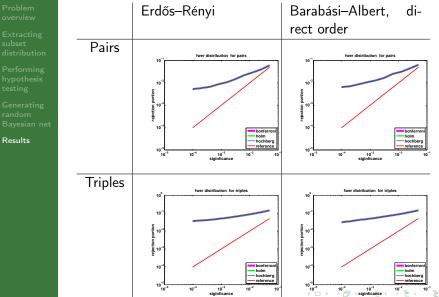
- 1 Problem overview
- 2 Extracting subset distribution
- 3 Performing hypothesis testing

イロト 不得下 イヨト イヨト ニヨー

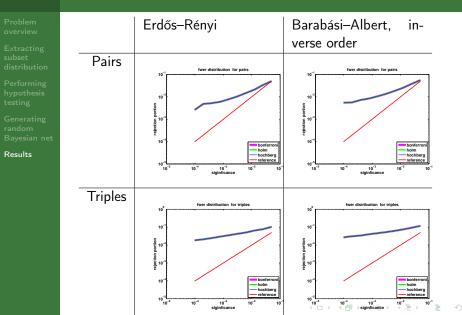
4 Generating random Baye

5 Results

χ^2 , 10 vertices, 9 edges, Dir(x, 1)



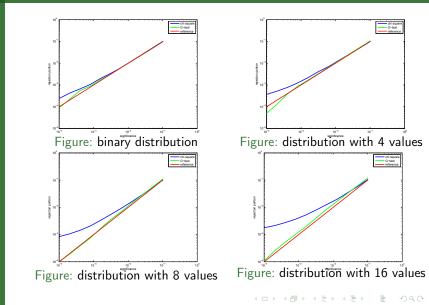
χ^2 , 10 vertices, 17-18 edges, Dir(x,1)



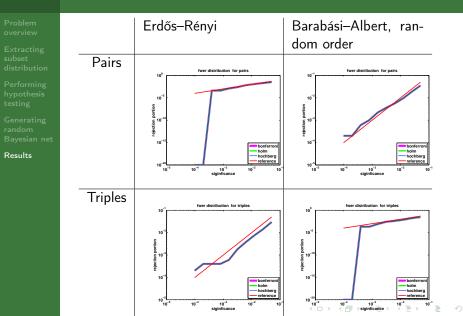
Simple hypothesis testing experiment - 100 000 experiments, 100 samples per experiment

- Problem overview
- Extracting subset distribution
- Performing hypothesis testing
- Generating random Bayesian net

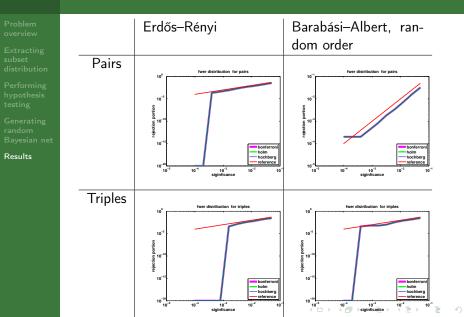
Results



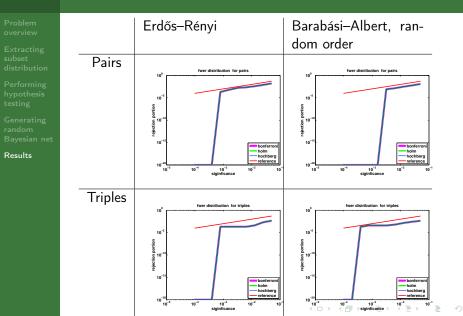
G - test, 10 vertices, 9 edges, Dir(x, 1)



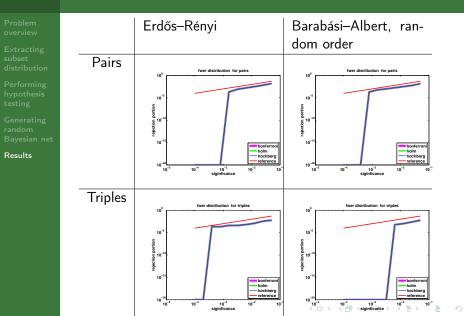
G - test, 10 vertices, 17-18 edges, Dir(x, 1)



G - test, 10 vertices, 9 edges, Dir(x, 0.2)



G - test, 10 vertices, 17-18 edges, Dir(x, 0.2)



Conclusions

Problem overview

- Extracting subset distribution
- Performing hypothesis testing
- Generating random Bayesian net

Results

- \blacksquare It's much better to use g-Test than χ^2 test.
- It does not matter which correction procedure we choose.

- Graph does not play a big role.
- Strength of variable interdependence does play an important role.

Problem overview

Extracting subset distributior

Performing hypothesis testing

Generating random Bayesian net

Results

The End

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙