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Stochastic and Full Gradient Descent

I We want to solve the following optimization problem:

Q(θ) =
1

n

n∑
i=1

fi (θ)→ min
θ∈Rd

Suppose all fi are differentiable and we know their gradients. What
methods do we know for solving this problem?

I Full Gradient Descent

θk+1 = θk − γ∇Q(θk)

I Stochastic Gradient Descent

θk+1 = θk − γk∇fik (θk), γk =
α

k + 1

I What is the difference?
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Explicit and Implicit methods

I We can rewrite FG and SGD schemes in implicit style
I Implicit FG

θk+1 = θk − γ∇Q(θk+1)

I Implicit SGD
θk+1 = θk − γk∇fi (θk+1)

I Advantages: stability for learning rate setting and usually better
results

I Drawbacks: more complicated implementation, more
time-consuming iterations
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Learning rate: example
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Stochastic Average Gradient (SAG)

I The SAG method incorporates both SGD and FG: it has the low
iteration cost of SGD, but makes gradient step with respect to the
approximation of the full gradient

I The SAG iterations take the following form

θk+1 = θk −
γ

n

n∑
i=1

gk
i ,

where at each iteration a random index ik is selected and we set

gk
i =

{
f ′ik (θk) if i = ik ,
gk−1
i otherwise

I To achieve low iteration cost we just need to store the table of
gradients gk

i and their sum
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Learning rate for SAG

I If the following inequality holds

||h(y)− h(x)|| 6 L||y − x ||, ∀x , y

then L is called Lipschitz constant for a function h

I If L is Lipschitz constant for all f ′i then it claims that SAG achieves
FG convergence rates with γ = 1

16L . But in practice authors use
γ = 1

L that gives even better results (higher γ may be better, but
not always)

I In general L will not be known, but we can use a basic line-search:
we start with an initial estimate L0, and at each iteration we double
this estimate while the following inequality is not satisfied

fik

(
θk −

1

Lk
f ′ik (θk)

)
6 f ′ik (θk)−

1

2Lk
||f ′ik (θk)||

2,

which must be true if Lk is valid.
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Implicit SAG

I Now review our own research
I We have that IFG and ISGD outperform their explicit versions and

are more stable for learning rate setting
I We try to introduce implicitness for SAG as follows

θk+1 = θk −
γ

n

n∑
i=1

gk
i ,

gk
i =

{
f ′ik (θk+1) if i = ik ,
gk−1
i otherwise
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Models

I Linear regression: We solve the following optimization problem:

1

n

n∑
i=1

(
(xTi θ)

2

2
− yix

T
i θ

)
→ min

θ

where xi ∈ Rd are features and yi ∈ R is response. Here we generate
synthetic data: xi ∼ N (0,Vx), yi ∼ N (xTi θ, 1), d = 20. We generate
n = 10000 objects

I Logistic regression: We solve the following optimization problem:

λ

2
||θ||2 + 1

n

n∑
i=1

log(1 + exp(−yixTi θ))→ min
θ
,

where xi ∈ Rd are features and yi ∈ {−1, 1} is a label for binary
classification. We use the quantum dataset obtained from the KDD
Cup 2004 website. 1 It contains n = 50000 objects with d = 78

1http://osmot.cs.cornell.edu/kddcup
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Considered methods

For aforemetioned models we will compare the following optimization
methods:

I SGD and Implicit SGD
I FG and Implicit FG
I SAG and Implicit SAG
I Moreover we will compare our methods to the state-of-the-art

method BFGS
For all the methods we tune a learning rate (where it is required)
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Implementation remarks

I In linear regression for every method we can derive all the formulae
analytically

I In logistic regression we can’t do this. Therefore, we need to solve
additional optimization problem at each step. ISGD and ISAG
require solving an one-dimensional equation that we solve with
Newton method; IFG requires solving a system of nonlinear
equations that we solve with Newton-Krylov method
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Experiments, Linear regression
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Experiments, Logistic regression
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Conclusion

I Implicit methods have a big advantage over their explicit antagonists
except SAG

I Implicit FG shows very impressive results, but it can be applied only
in the case of small n and d

I ISAG and SAG show similiar results
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Future work

I We will try to change our intuition of implicit SAG to make it closer
to implicit FG

I We will try to apply optimization scheme with mini-batches for
ISGD and SAG/ISAG
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