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Graph cut segmentationGraph cut segmentation
Graph cut segmentation [Boykov&Jolly 01]:
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[Greig, Porteous, Seheult 89]

Alternative notation:Alternative notation:
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Example: Interactive segmentationExample: Interactive segmentation
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What if some “global” cues are also available?What if some “global” cues are also available?

• Integrating local cues
b t tti l b l l ti• ...but getting global solutions

• Many application scenarios...

Image Segmentation beyond  Graph Cuts



Image segmentation: the problemImage segmentation: the problem

background

object

• Prior knowledge (“compactness”)
L l l ( d )• Low-level cues (e.g. edge cues)

• High-level knowledge (e.g. “Penguin on a rock”)
• User input
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Why image segmentation?Why image segmentation?
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Image segmentation: the storyImage segmentation: the story

Since long Ago: 
rule-based methods, such as thresholding or region growing (magic 

wand)wand)

Since 1988 [Kass Witkin Terzopoulos]:Since 1988 [Kass, Witkin, Terzopoulos]: 
energy optimization via local curve evolution

Since 2001[Boykov, Jolly]:
global energy optimization via graph cuts (st-mincut) 
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Graph cut segmentationGraph cut segmentation
[Boykov and Jolly 2001][Boykov and Jolly, 2001]

S (“object”, xp=1) background
xp=0

Exponential 
number of 

segmentations
I  l i l ti !

Exponential 
number of 

segmentations
I  l i l ti !

object
xp=1

In polynomial time!In polynomial time!

“Pairwise” terms:
• Ising prior
• Edge cues

“Unary” terms:
• Color models
• User “brushes”

T (“background”, xp=0) Alternative notation:
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Why go beyond?Why go beyond?

We can express:
1. Edge cues & Ising prior (via Ppq)
2 B h ( t Fp Bp t )2. Brushes (set Fp or Bp to ∞)
3. Color likelihoods (via Fp and Bp)

butbut

Part I Part IIPart I
Lempitsky, Blake, Rother, 
Image Segmentation by 
Branch-and-Mincut

Part II
Lempitsky, Kohli, Rother, 
Image Segmentation with 
A Bounding Box Prior

How to segment a car in the image? H t ti ht f th b di b

Branch-and-Mincut, 
ECCV 2008

A Bounding Box Prior, 
ICCV 2009

How to segment a car in the image? How to ensure tightness of the bounding bo

Still want non-local and efficient optimization!
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Image Segmentation by 
B h d Mi t
Image Segmentation by 
B h d Mi tBranch-and-MincutBranch-and-Mincut

Vi t  L it kVi t  L it kVictor Lempitsky
Andrew Blake

C t  R th

Victor Lempitsky
Andrew Blake

C t  R thCarsten RotherCarsten Rother



An exampleAn example

0 F p
-

P pqp q

s
1
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1image from UIUC car dataset

......
B p

-

P-p q

t [Hammer 64] 
G S 89

Standard “graph cut” segmentation energy [Boykov, Jolly 01]:

[Greig, Porteous, Seheult 89]

Fp=1, Bp=0 Ppq

Fp=0, Bp=1

, Ppq

[Freedman, Zhang 05], [Ali, Farag, El-Baz 07],... 
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A harder exampleA harder example
image from UIUC car dataset

0

image from UIUC car dataset

Ppq

1
0 Ppq

Optimal x

min

Optimal ω

min
x,ω
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Energy optimizationEnergy optimization
ω – global parameter (ω   Ω0)                                                       

constant unary  potentials (costs) pairwise  potentials (costs)  0

....shape priors, color distribution/intensity priors (Chan-Vese, GrabCut)...

Optimization options:

• Choose reasonable ω  solve for x

....shape priors, color distribution/intensity priors (Chan Vese, GrabCut)...

• Choose reasonable ω, solve for x
[Freedman, Zhang 05], [Pawan Kumar, Torr, Zisserman’ObjCut 05], [Ali, Farag, El-Baz 07] ....

• Alternate between x and ω (EM) 
[Rother  Kolmogorov  Blake’ GrabCut 04]  [Bray  Kohli  Torr’PoseCut 06]  [Kim  Zabih 03][Rother, Kolmogorov, Blake  GrabCut 04], [Bray, Kohli, Torr PoseCut 06], [Kim, Zabih 03]....

• Optimize continuously
[Chan, Vese 01], [Leventon, Grimson, Faugeras 00], [Cremers, Osher, Soatto 06], [Wang, Staib 98]...

• Exhaustive search
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Our approachOur approach

along x dimensionalong ω dimension

• Extremely large, structured domain• Low-dimensional (discretized) domain
• Specific “graph cut” function• Function of the general form

Branch-and-boundBranch-and-bound

Mincut

Branch and Mincut

[Gavrila, Philomin 99], [Lampert, Blaschko, Hofman 08], [Cremers, Schmidt, Barthel 08]

Branch-and-Mincut
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Search treeSearch tree

ΩΩ0

000000
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Bounding the energy: an exampleBounding the energy: an example

Fp=0, Bp=1

Fp=1, Bp=0

12 Fp=0, Bp=0

min

,
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The lower boundThe lower bound

ΩΩΩ

F p
-

P pqp q

s

B p
-

P pq
-p q

tComputable with mincut!
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Lower boundLower bound

• Monotonic increase towards leaves
• Tightness at leaf nodes: 
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Lower bound: exampleLower bound: example
precomputed computed at runtimeprecomputed computed at runtime
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Branch-and-BoundBranch-and-Bound

Standard best-first branch-and-bound search:

lowest lower boundlowest lower bound

B

C
A

additional speed-up from “reusing” maxflow computations  [Kohli,Torr 05]

Small fraction of nodes is visited
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Results: shape priorResults: shape prior

30 000 000 h30,000,000 shapes

Exhaustive search: 30,000,000 mincuts
B h d Mi t  12 000 i tBranch-and-Mincut: 12,000 mincuts

Speed-up: 2500 times
(30 seconds per 312x272 image)
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Results: shape priorResults: shape prior
Left ventricle epicardium tracking (work in progress)

Our segmentation
Sh  i  f  h  

Original sequence No shape prior
Shape prior from other sequences

5,200,000 templates
≈20 seconds per frame

Speed up 1150Speed-up 1150

Data courtesy:  Dr Harald Becher, Department of Cardiovascular  Medicine, University of Oxford 
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Result: shape priorResult: shape prior

Can add feature-
based detector here

UIUC car dataset
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Results: Discrete Chan-Vese functionalResults: Discrete Chan-Vese functional

Chan-Vese functional [Chan, Vese 01]:

f

cb

c_pc_pcf

Gl b l i i  f h  di  Ch V  f i l

 [0;255]x[0;255]:  quad-tree clustering

Global minima of the discrete Chan-Vese functional:

Speed-up 28-58 times
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PerformancePerformance

Sample Chan-Vese problem: 
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Results: GrabCutResults: GrabCut
• ω corresponds to color mixtures
• [Rother, Kolmogorov, Blake’ GrabCut 04] uses EM-like search
• Branch-and-Mincut searches over 65,536 starting points

E = -618 E = -624 (speed-up 481) E = -628

E = -593 E = -584 (speed-up 141) E = -607
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ConclusionConclusion

•

good energy to integrate low-level and high-level knowledge in segmentation.

• Branch-and-Mincut framework can find its global optimum efficiently in many cases

• Ongoing work: Branch-and-X algorithms

Branch-and-boundBranch-and-bound

MiDynamic  MincutDynamic  
Programming

C++ code at http://research.microsoft.com/~victlem/
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Multi-label Augmented MRFsMulti-label Augmented MRFs
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An experimentAn experiment

22 points

Bi ID d t t 1520 f
FGNet annotations by
D id C i ti dBioID dataset: 1520 faces,

800 for training, 720 for testing
David Cristinacce and

Kola Babalola

Image Segmentation beyond  Graph Cuts



Pictorial structure MRFPictorial structure MRF
[Felzenszwalb Huttenlocker 05][Felzenszwalb Huttenlocker 05]

• Tree-structured MRF
• 22 nodes
• Label space – all image locations

Unaries for eye corner Unaries for the chin
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Branch-and-DPBranch-and-DP

Ω0Ω0Ω0“Branch and DP”[Felzenszwalb Huttenlocker 05] Ω0Ω0Ω0Branch-and-DP[Felzenszwalb Huttenlocker 05]

10,000 configurations
Scales/rotations/deformations

1 configuration

Messages are still cheap - O(n)
(distance transforms + van Herk-Gil-Werman algorithm

Messages are cheap - O(n)
(distance transforms)
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ResultsResults
Space size 10,000, 

average speed-up 
11.5* 
(3 minutes for fitting)

10,000 templates (mean error 2.8) 1 template (mean error 4.2)
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S hS hImage Segmentation with 
A Bounding Box Prior

Image Segmentation with 
A Bounding Box PriorA Bounding Box PriorA Bounding Box Prior

ICCV 2009ICCV 2009

Victor Lempitsky
Pushmeet Kohli

Victor Lempitsky
Pushmeet Kohli
Carsten Rother

Toby Sharp
Carsten Rother

Toby Sharpy py p



MotivationMotivation

Magnetic Lasso
GrabCut

RotherInteractive graph cutag et c asso
Mortensen & Barret ‘95

Rother, 
Kolmogorov & 

Blake ‘04

Interactive graph cut
Boykov & Jolly ‘01

* Globally optimal
* user intensive

* Globally optimal
* user friendly

* NP hard  (global 
color model)
* very user friendly
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Graph cut systemsGraph cut systems
Graph cut segmentation [Boykov&Jolly 01] integrates cues and 

input via:

s

p q

s

......

t

GMMRF&GrabCut [Blake et al. 04, Rother et al.05]
adds the Gaussian mixture fitting idea + reiteration
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When it is not right straight away…When it is not right straight away…

Solutions:Solutions:
1. More interaction
2. High-level semantic knowledgeg g
3. Or just look at the user input more attentively

“Tightness” constraint would help!
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Problem FormulationProblem Formulation
Graph cut segmentation [Boykov&Jolly 01] integrates cues and 

input via:

??
Minimize subject to 

??
“shape is sufficiently tight”
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Crossing pathsCrossing paths

Upper margin

crossing pathcrossing pathLe R
Middle box

eft m
ar

R
ight m

Middle boxrgin

argin

Lower marginLower margin
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Shape tightnessShape tightness
bounding box

middle box

Definition: the shape is tight if it intersects all crossing paths
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Shape tightnessShape tightness

Tight:

Not tight:

Corollary: the shape is tight if and only if
the shape has a connected component 
touching all 4 sides of the middle box
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Incorporating Shape TightnessIncorporating Shape Tightness

bounding box

middle box

CC2 C1
C2

all 4-connected crossing paths
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Incorporating Shape TightnessIncorporating Shape Tightness

[ ]

Problems:
R l !

Trivial to convert to an LP now!Trivial to convert to an LP now!

1. It’s integer (hence non-convex)
2. It has combinatorial number of constraints

Relax!

R l t d kRelated work:
K. Kolev, D. Cremers: Integration of Multiview Stereo and 

Silhouettes via Convex Functionals on Convex DomainsSilhouettes via Convex Functionals on Convex Domains. 
ECCV 2008
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Solving the Linear RelaxationSolving the Linear Relaxation bounding box

middle box

1• Cannot enforce all constraints
• Dijkstra can check if all 
constraints are satisfied
• Dijkstra can find the most 
violated constraint

0.25

violated constraint
• Can switch the constraints on
gradually

0See also:
S Nowozin and C H Lampert:S. Nowozin and C. H. Lampert:
Global Connectivity Potentials for 
Random Field Models. CVPR 2009
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Solving the Linear RelaxationSolving the Linear Relaxation

Start with no constraints

Iterate:

1 Pick a set of violated paths1. Pick a set of violated paths

2. Activate respective constraints

3. Rerun linear optimization

Until all constraints satisfied
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Solving the Linear RelaxationSolving the Linear Relaxation
Image g

(in the bounding box) unary terms LP solution
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How to Round?How to Round?

[ ]

Previous works e.g. [Kolev&Cremers’08]: g [ ]
just threshold at low enough value

Our work: use the problem structure to 
perform provably better rounding
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Pinpointing AlgorithmPinpointing Algorithm

“pinpointing” set

Pinpointing algorithm idea: 
use the fractional solution to the initial problem 

id h i f h i i ito guide the construction of the pinpointing set 
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Pinpointing AlgorithmPinpointing Algorithm
bounding boxbounding box bounding boxbounding box

middle boxmiddle box

LP solution Rounded solution

• Use “dynamic graph cut” [Boykov&Jolly’01],[Kohli&Torr’04]
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Pinpointing AlgorithmPinpointing Algorithm

i t b di b th h ldi i i ti

Corollary: pinpointing always gets a lower (or same) energy solution compared to thres

input bounding box
LP solution

thresholding, 
E = -0.46

pinpointing, 
E = -0.54
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Pinpointing AlgorithmPinpointing Algorithm

Pi i ti i Pi i ti LP l ti

Pinpointing can be used as a fast, standalone heuristics.

Pinpointing unaries,
E= -16.5

Pinpointing LP solution,
E= -17.0LP solutionUnary terms
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Quantitative resultsQuantitative results
GMMRF [Blake et al. 04]:
1. Fit Gaussian mixtures to get unary terms

method Error

2. Optimize the graph cut energy + a bounding box prior

Thresholding unaries 12.7

J d  h  (  b di  b  i ) 6 7

fast

fastJust do graph cut (no bounding box prior) 6.7

Solve LP and threshold 5.4

fast

slow

Solve LP and do pinpointing 5.0

Pinpointing based on naries 5 2 f t

slow

Pinpointing based on unaries 5.2

Relative ordering in terms of the obtained energy is the same

fast
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Refining color modelsRefining color models
GrabCut [Rother et al. 04]: iterate
1. Fitting gaussian mixtures
2 Optimizing the graph cut energy + a bounding box prior2. Optimizing the graph cut energy + a bounding box prior

The error rate goes down from 5.1% to 3.7%
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ConclusionConclusion

• Global constraints are powerful
• Approximate optimization is possible

Thank you for your attention!
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