Image Segmentation: beyond Graph Cuts

Victor Lempitsky

Graph cut segmentation

Graph cut segmentation [Boykov&Jolly 01]:

Example: Interactive segmentation

What if some "global" cues are also available?

- Integrating local cues
- ...but getting global solutions
- Many application scenarios...

Image segmentation: the problem

7

- Prior knowledge ("compactness")
- Low-level cues (e.g. edge cues)
- High-level knowledge (e.g. "Penguin on a rock")
- User input

Why image segmentation?

Image segmentation: the story

Since long Ago:

rule-based methods, such as thresholding or region growing (magic wand)

Since 1988 [Kass, Witkin, Terzopoulos]:

energy optimization via local curve evolution

Since 2001[Boykov, Jolly]:

global energy optimization via graph cuts (st-mincut)

Graph cut segmentation [Boykov and Jolly, 2001] **Exponential** background S ("object", $x_p=1$) number of **Xp=0** segmentations In polynomial time! obie "Unary" terms: "Pairwise" terms: • Color models • Ising prior User "brushes" • Edge cues $E(\mathbf{x}) = \sum_{p \in \mathcal{V}} F^p x_p + \sum_{p \in \mathcal{V}} B^p (1 - x_p) + \sum_{p,q \in \mathcal{E}} P^{pq} |x_p - x_q|$ $p,q \in \mathcal{E}$ Alternative notation: T ("background", $x_p=0$) $E(\mathbf{x}) = \sum U^p \cdot x_p + \sum V^{pq} \cdot |x_p - x_q|$ $\{p,q\} \in \mathcal{E}$ $p \in \mathcal{B}$

Why go beyond?

We can express:

- 1. Edge cues & Ising prior (via *P*^{pq})
- 2. Brushes (set F^p or B^p to ∞)
- 3. Color likelihoods (via F^p and B^p)

$E(\mathbf{x}) = \sum_{p \in \mathcal{V}} F^p \cdot x_p + \sum_{p \in \mathcal{V}} B^p \cdot (1 - x_p) + \sum_{p,q \in \mathcal{E}} P^{pq} \cdot |x_p - x_q|$

How to segment a car in the image? How to ensure tightness of the bounding bo

Still want non-local and efficient optimization!

Image Segmentation beyond Graph Cuts

but

Victor Lempitsky Andrew Blake Carsten Rother

An example

image from UIUC car dataset

Standard "graph cut" segmentation energy [Boykov, Jolly 01]:

[Freedman, Zhang 05], [Ali, Farag, El-Baz 07],...

A harder example

image from UIUC car dataset

Optimal X

$$E(\mathbf{x} \quad) = \sum_{p \in \mathcal{V}} F^p \quad \cdot x_p + \sum_{p \in \mathcal{V}} B^p \quad \cdot (1 - x_p) + \sum_{p,q \in \mathcal{E}} P^{pq} \cdot |x_p - x_q|$$

Optimal ω

Energy optimization

Optimization options:

- Choose reasonable ω, solve for X
 [Freedman, Zhang 05], [Pawan Kumar, Torr, Zisserman'ObjCut 05], [Ali, Farag, El-Baz 07]
- Alternate between X and ω (EM)
 [Rother, Kolmogorov, Blake' GrabCut 04], [Bray, Kohli, Torr'PoseCut 06], [Kim, Zabih 03]....
- Optimize continuously [Chan, Vese 01], [Leventon, Grimson, Faugeras 00], [Cremers, Osher, Soatto 06], [Wang, Staib 98]...
- Exhaustive search

Our approach

$$E(\mathbf{x},\omega) = C(\omega) + \sum_{p \in \mathcal{V}} F^p(\omega) \cdot x_p + \sum_{p \in \mathcal{V}} B^p(\omega) \cdot (1-x_p) + \sum_{p,q \in \mathcal{E}} P^{pq}(\omega) \cdot |x_p - x_q|$$

along ω dimension

- Low-dimensional (discretized) domain
- Function of the general form

along X dimension

- Extremely large, structured domain
- Specific "graph cut" function

[Gavrila, Philomin 99], [Lampert, Blaschko, Hofman 08], [Cremers, Schmidt, Barthel 08]

Search tree

 $\min_{\mathbf{x}\in 2^{\mathcal{V}}} F(\mathbf{x}) \longrightarrow 2 \text{ mincuts}$ $\min_{\mathbf{x}\in 2^{\mathcal{V}}} G(\mathbf{x}) \longrightarrow 1 \text{ mincut}$

Branch-and-Bound

Standard best-first branch-and-bound search:

additional speed-up from "reusing" maxflow computations [Kohli,Torr 05]

Results: shape prior

30,000,000 shapes

Exhaustive search: 30,000,000 mincuts Branch-and-Mincut: 12,000 mincuts

Speed-up: 2500 times (30 seconds per 312x272 image)

Results: shape prior

Left ventricle epicardium tracking (work in progress)

Original sequence

No shape prior

Our segmentation Shape prior from other sequences 5,200,000 templates ≈20 seconds per frame Speed-up 1150

Data courtesy: Dr Harald Becher, Department of Cardiovascular Medicine, University of Oxford

Result: shape prior $E(\mathbf{x},\omega) = C(\omega) + \sum_{p \in \mathcal{V}} F^p(\omega) \cdot x_p + \sum_{p \in \mathcal{V}} B^p(\omega) \cdot (1-x_p) + \sum_{p \in \mathcal{V}} P^{pq}(\omega) \cdot |x_p - x_q|$ $p \in \mathcal{V}$ $p,\!q\!\in\!\mathcal{E}$ $p \in \mathcal{V}$ Can add featurebased detector here UIUC car dataset

Results: Discrete Chan-Vese functional

Chan-Vese functional [Chan, Vese 01]:

$$E(\mathbf{x}, c^f, c^b)$$

 $\omega = \{c^f, c^b\}$ \in [0;255]x[0;255]: quad-tree clustering

Global minima of the discrete Chan-Vese functional:

Speed-up 28-58 times

Performance

Sample Chan-Vese problem:

Results: GrabCut

- ω corresponds to color mixtures
- [Rother, Kolmogorov, Blake' GrabCut 04] uses EM-like search
- Branch-and-Mincut searches over 65,536 starting points

E = -618

E = -624 (speed-up 481)

E = -628

Conclusion

•
$$E(\mathbf{x},\omega) = C(\omega) + \sum_{p \in \mathcal{V}} F^p(\omega) \cdot x_p + \sum_{p \in \mathcal{V}} B^p(\omega) \cdot (1-x_p) + \sum_{p,q \in \mathcal{E}} P^{pq}(\omega) \cdot |x_p - x_q|$$

- good energy to integrate low-level and high-level knowledge in segmentation.

- Branch-and-Mincut framework can find its global optimum efficiently in many cases
- **Ongoing work:** Branch-and-X algorithms

C++ code at <u>http://research.microsoft.com/~victlem/</u>

Multi-label Augmented MRFs

An experiment

BioID dataset: 1520 faces, 800 for training, 720 for testing

22 points FGNet annotations by David Cristinacce and Kola Babalola

Pictorial structure MRF

[Felzenszwalb Huttenlocker 05]

- Tree-structured MRF
- 22 nodes
- Label space all image locations

Branch-and-DP $E(\mathbf{x},\omega) = \sum_{p \in \mathcal{V}} U^p(x_p) + \sum_{p,q \in \mathcal{E}} ||x_p - x_q - l_{pq}(\omega)||$ [Felzenszwalb Huttenlocker 05] "Branch-and-DP" Ω_0 10,000 configurations 1 configuration Scales/rotations/deformations Messages are cheap - O(n) Messages are still cheap - O(n) (distance transforms)

(distance transforms + van Herk-Gil-Werman algorithm

Results

Space size 10,000, average speed-up 11.5* (3 minutes for fitting)

10,000 templates (mean error 2.8)

1 template (mean error 4.2)

Image Segmentation with A Bounding Box Prior

ICCV 2009

Victor Lempitsky Pushmeet Kohli Carsten Rother Toby Sharp

Motivation

Magnetic Lasso Mortensen & Barret '95

* Globally optimal* user intensive

Interactive graph cut Boykov & Jolly '01

* Globally optimal

* user friendly

GrabCut Rother, Kolmogorov & Blake '04

* NP hard (global color model) * very user friendly

Graph cut systems

Graph cut segmentation [Boykov&Jolly 01] integrates cues and input via:

When it is not right straight away...

Solutions:

- 1. More interaction
- 2. High-level semantic knowledge
- 3. Or just look at the user input more attentively

"Tightness" constraint would help!

Problem Formulation

Graph cut segmentation [Boykov&Jolly 01] integrates cues and input via:

Crossing paths

Definition: the shape is tight if it intersects all crossing path:

Corollary: the shape is tight *if and only if* the shape has a connected component touching all 4 sides of the middle box

Incorporating Shape Tightness

$$E(\mathbf{x}) = \sum_{p \in \mathcal{B}} U^p \cdot x_p + \sum_{\{p,q\} \in \mathcal{E}} V^{pq} \cdot |x_p - x_q|, \quad x_p \in [0, 1]$$

1

$$C \in \Gamma \quad \sum_{p \in C} x_p \ge 0$$

Trivial to convert to an LP now!

Problems:

- 1. It's integer (hence **non-convex**) Relax!
- 2. It has combinatorial number of constraints

Related work:

K. Kolev, D. Cremers: Integration of Multiview Stereo and Silhouettes via Convex Functionals on Convex Domains. ECCV 2008

Solving the Linear Relaxation

bounding box

 $\forall C \in \Gamma \quad \sum_{p \in G} x_p \ge 1$

• Cannot enforce all constraints

 $p \in C$

- Dijkstra can check if all constraints are satisfied
- Dijkstra can find the most violated constraint
- Can switch the constraints on gradually

See also:

S. Nowozin and C. H. Lampert: Global Connectivity Potentials for Random Field Models. CVPR 2009

Solving the Linear Relaxation

Solving the Linear Relaxation

How to Round?

$$\begin{split} E(\mathbf{x}) &= \sum_{p \in \mathcal{B}} U^p \cdot x_p + \sum_{\{p,q\} \in \mathcal{E}} V^{pq} \cdot |x_p - x_q|, \quad x_p \in \llbracket 0, 1 \rrbracket \\ \forall C \in \Gamma \quad \sum_{p \in C} x_p \ge 1 \end{split}$$

Previous works e.g. [Kolev&Cremers'08]: just **threshold** at low enough value

Our work: **use the problem structure** to perform provably better rounding

Pinpointing Algorithm

Pinpointing algorithm idea:

use the fractional solution to the initial problem to guide the construction of the pinpointing set

• Use "dynamic graph cut" [Boykov&Jolly'01],[Kohli&Torr'04]

Pinpointing Algorithm

Corollary: pinpointing always gets a lower (or same) energy solution compared to thres

Pinpointing Algorithm

Pinpointing can be used as a fast, standalone heuristics.

Quantitative results

GMMRF [Blake et al. 04]:

- 1. Fit Gaussian mixtures to get unary terms
- 2. Optimize the graph cut energy + a bounding box prior

Relative ordering in terms of the obtained energy is the same

Refining color models

GrabCut [Rother et al. 04]: iterate

1. Fitting gaussian mixtures

2. Optimizing the graph cut energy + a bounding box prior

The error rate goes down from 5.1% to 3.7%

Conclusion

- Global constraints are powerful
- Approximate optimization is possible

Thank you for your attention!

