

Эдуард Хайрутдинович Гимади, Оксана Юрьевна Цидулко

Институт математики им. С.Л. Соболева СО РАН Новосибирский государственный университет

> ММРО-17, Светлогорск 19 Сентября 2015 – 25 Сентября 2015

Contents

1. Постановки задач

- m-Peripatetic Salesman Problem
- Minimum m-cycle cover problem
- Minimum m-chain cover problem
- 2. Сложностной статус задач
- 3. Приближенные жадные алгоритмы
- 4. Вероятностный анализ
 - Определения
 - Основные идеи
 - Результаты

m-Peripatetic Salesman Problem

Дан полный граф G = (V, E) и весовые функции ребер $w_i : E \to \mathbf{R}_+, i = 1, \dots, m,$

Требуется найти m реберно-непересекающихся гамильтоновых циклов H_1, \ldots, H_m , таких что

$$W_1(H_1) + \ldots + W_m(H_m) = \sum_{i=1}^m \sum_{e \in H_i} w_i(e) \rightarrow \min.$$

Minimum m-cycles cover problem (m-CC-min)

Дан полный граф G = (V, E) и известны веса ребер $w : E
ightarrow \mathbf{R}_+.$

Требуется найти *m* вершинно-непересекающихся циклов C_1, \ldots, C_m , таких что $V(C_1) \cup V(C_2) \cup \ldots \cup V(C_m) = V$ и

$$W(C_1) + \ldots + W(C_m) = \sum_{i=1}^m \sum_{e \in C_i} w(e) \to \min$$

Minimum m-chains cover problem (m-ChC-min)

Дан полный граф G = (V, E) и известны веса ребер $w : E
ightarrow \mathbf{R}_+.$

Требуется найти *m* вершинно-непересекающихся простых цепей C_1, \ldots, C_m , таких что $V(C_1) \cup V(C_2) \cup \ldots \cup V(C_m) = V$ и

$$W(C_1) + \ldots + W(C_m) = \sum_{i=1}^m \sum_{e \in C_i} w(e) \to \min$$

Все 3 задачи за полиномиальное время сводятся к TSP_{min} и обратно, поэтому они наследуют ее сложностной и аппроксимационный статус.

- TSP_{min} NP-трудна в сильном смысле (Karp, 1972)
- TSP неприближаема с точностью $O(2^n)$ за полиномиальное время, если $P \neq NP$ (Sahni and Gonzales, 1976)

Приближенные алгоритмы

- I входные данные задачи
- *F_A(I)* значение целевой функции, полученное некоторым алгоритмом А
- *OPT*(*I*) оптимальное значение целевой функции.

Поскольку не существует приближенного полиномиального алгоритма с разумно малой гарантированной оценкой точности $p \ge 1$:

 $F_A(I) \leq pOPT(I),$

Приближенные алгоритмы

- I входные данные задачи
- *F_A(I)* значение целевой функции, полученное некоторым алгоритмом А
- *OPT*(*I*) оптимальное значение целевой функции.

Поскольку не существует приближенного полиномиального алгоритма с разумно малой гарантированной оценкой точности $p \ge 1$:

 $F_A(I) \leq pOPT(I),$

предлагается вероятностный подход:

$$Pr\{F_A(I) > (1 + \varepsilon_A)OPT(I)\} \leq \delta_A.$$

Мы хотим ограничить вероятность нежелательного события величиной $\delta_{\mathcal{A}}$

7 of 29

- Вход: Полный *п*-вершинный граф G = (V, E) с весовыми функциями w_i : E → R₊, i = 1,..., m, где m < n/4
- Выход: *т* реберно-непересекающихся гамильтоновых циклов H_1, \ldots, H_m
- Временная сложность: O(mn²)

- Вход: Полный *п*-вершинный граф G = (V, E) с весовыми функциями w_i : E → R₊, i = 1,..., m, где m < n/4
- Выход: *m* реберно-непересекающихся гамильтоновых циклов *H*₁,..., *H_m*
- Временная сложность: O(mn²)
- Основная идея: модификация жадного алгоритма, последовательное нахождение гамильтоновых циклов H₁,..., H_m.

Этап *i* = 1, . . . , *m*.

На *i*-ом этапе мы рассматриваем имеющийся граф G с весовой функцией ребер *w_i* и строим *i*-ый гамильтонов цикл *H_i* :

Этап $i = 1, \ldots, m$.

На *i*-ом этапе мы рассматриваем имеющийся граф G с весовой функцией ребер *w*; и строим *i*-ый гамильтонов цикл *H*_i :

Шаг іО

Случайным образом выберем первое ребро $e_1^{(i)}$ для цикла H_i .

Этап *i* = 1, ..., *m*.

На *i*-ом этапе мы рассматриваем имеющийся граф G с весовой функцией ребер *w*; и строим *i*-ый гамильтонов цикл *H*_i :

Шаг іО

Случайным образом выберем первое ребро $e_1^{(i)}$ для цикла H_i .

Шаг і1

Из произвольной вершины ребра $e_1^{(i)}$ построим частичный путь, применяя принцип "иди в ближайшую не пройденную вершину" n-4i раз.

Этап $i = 1, \ldots, m$.

На *i*-ом этапе мы рассматриваем имеющийся граф G с весовой функцией ребер *w*; и строим *i*-ый гамильтонов цикл *H*_i :

Шаг і0

Случайным образом выберем первое ребро $e_1^{(i)}$ для цикла H_i .

Шаг і1

Из произвольной вершины ребра $e_1^{(i)}$ построим частичный путь, применяя принцип "иди в ближайшую не пройденную вершину" n-4i раз.

Шаг і2

Достроим этот частичный путь до гамильтонова цикла H_i с помощью специальной процедуры extension-rotation \mathbb{P} .

Этап *i* = 1, ..., *m*.

На *i*-ом этапе мы рассматриваем имеющийся граф G с весовой функцией ребер *w*; и строим *i*-ый гамильтонов цикл *H*_i :

Шаг іО

Случайным образом выберем первое ребро $e_1^{(i)}$ для цикла H_i .

Шаг і1

Из произвольной вершины ребра $e_1^{(i)}$ построим частичный путь, применяя принцип "иди в ближайшую не пройденную вершину" n-4i раз.

Шаг і2

Достроим этот частичный путь до гамильтонова цикла H_i с помощью специальной процедуры extension-rotation \mathbb{P} .

Уберем из графа G все ребра, принадлежащие циклу H_i , для исключения возможности их попадания в следующие циклы $i + 1, \ldots, m$.

Процедура extension-rotation \mathbb{P} .

В графе $H = (V_H, E_H)$, с минимальной степенью вершины $> |V_H|/2$, процедура \mathbb{P} строит гамильтонову цепь P с заданными концами u и v за время $O(|V_H|^2)$.

• Пусть построен путь $P = \{u = u_1, \dots, u_k\}$

Процедура extension-rotation \mathbb{P} .

В графе $H = (V_H, E_H)$, с минимальной степенью вершины $> |V_H|/2$, процедура \mathbb{P} строит гамильтонову цепь P с заданными концами u и v за время $O(|V_H|^2)$.

- Пусть построен путь $P = \{u = u_1, \dots, u_k\}$
- Если возможно, добавим к пути ребро {u_k, w}, w ∉ P.

Процедура extension-rotation \mathbb{P} .

В графе $H = (V_H, E_H)$, с минимальной степенью вершины $> |V_H|/2$, процедура \mathbb{P} строит гамильтонову цепь P с заданными концами u и v за время $O(|V_H|^2)$.

- Пусть построен путь $P = \{u = u_1, \dots, u_k\}$
- Если возможно, добавим к пути ребро {u_k, w}, w ∉ P.

• Иначе возьмем произвольное $w \notin P$, добавим в Р ребра $\{u_k, u_i\}$ и $\{u_{i+1}, w\}$, уберем ребро $\{u_i, u_{i+1}\}$

Алгоритм \widetilde{A}_2 для задачи m-CyclesCover

- Вход: полный *п*-вершинный граф G = (V, E) с весами ребер w : E → R₊, целое m < n/3.
- Выход: *т* вершинно-непересекающихся циклов C_1, \ldots, C_m
- Временная сложность: *O*(*n*²)

Алгоритм \widetilde{A}_2 для задачи m-CyclesCover

- Вход: полный *n*-вершинный граф G = (V, E) с весами ребер w : E → R₊, целое m < n/3.
- Выход: *т* вершинно-непересекающихся циклов *C*₁,..., *C*_{*m*}
- Временная сложность: *O*(*n*²)
- Основная идея: Жадный алгоритм в предположении, что

$$#edges(C_i) = |n/m|, i = 1, \dots, m-1$$
 $#edges(C_m) = n - \sum_{i=1}^{m-1} #edges(C_i),$

и первое ребро в каждом цикле выбирается случайно.

Алгоритм \widetilde{A}_3 для задачи m-ChainsCover

- Вход: полный *n*-вершинный граф G = (V, E) с весами ребер w : E → R₊, целое m < n/2.
- Выход: *т* вершинно-непересекающихся цепей C_1, \ldots, C_m
- Временная сложность: O(n²)

Алгоритм \widetilde{A}_3 для задачи m-ChainsCover

- Вход: полный *n*-вершинный граф G = (V, E) с весами ребер w : E → R₊, целое m < n/2.
- Выход: *т* вершинно-непересекающихся цепей C₁,..., C_m
- Временная сложность: O(n²)
- Основная идея: Жадный алгоритм в предположении, что

$$#edges(C_i) = |n/m| - 1, i = 1, ..., m - 1$$

 $#edges(C_m) = n - m - \sum_{i=1}^{m-1} #edges(C_i),$

$\Pr{F_A > (1 + \varepsilon_A(n))OPT} \le \delta_A(n)$

$$\Pr{F_A > (1 + \varepsilon_A(n))OPT} \le \delta_A(n)$$

n – размерность задачи

$\Pr{F_A > (1 + \varepsilon_A(n))OPT} \le \delta_A(n)$

- *n* размерность задачи
- $\varepsilon_A(n)$ оценка относительной погрешности алгоритма

$\Pr{F_A > (1 + \varepsilon_A(n))OPT} \le \delta_A(n)$

- *n* размерность задачи
- *ε*_A(n) оценка относительной погрешности алгоритма
- $\delta_A(n)$ вероятность несрабатывания, т.е. доля случаев, когда алгоритм A не гарантирует относительную погрешность, не превосходящую $\varepsilon_A(n)$.

$\Pr{F_A > (1 + \varepsilon_A(n))OPT} \le \delta_A(n)$

- *n* размерность задачи
- *ε*_A(n) оценка относительной погрешности алгоритма
- $\delta_A(n)$ вероятность несрабатывания, т.е. доля случаев, когда алгоритм A не гарантирует относительную погрешность, не превосходящую $\varepsilon_A(n)$.

Definition

Алгоритм A называется асимптотически точным на классе рассматриваемых задач, если существуют оценки ε_A и δ_A :

$$\varepsilon_A \xrightarrow[n \to \infty]{} 0, \ \delta_A \xrightarrow[n \to \infty]{} 0.$$

Случайные входы рассматриваемых задач

Входные данные для задачи m-PSP

представим в виде $m \times n \times n$ матрицы весов $C = (c_{ijk})$, где c_{ijk} равен значению *i*-ой весовой функции $w_i(e)$ на ребре e = (j, k), $i = \overline{1, m}, j, k = \overline{1, n}$.

Входы для задач m-CyclesCover и m-ChainsCover

представим в виде $n \times n$ матрицы весов $C = (c_{ij})$, где c_{ij} равен значению w(e) на ребре e = (i, j), $i, j = \overline{1, n}$.

Случайные входы рассматриваемых задач

Входные данные для задачи m-PSP

представим в виде $m \times n \times n$ матрицы весов $C = (c_{ijk})$, где c_{ijk} равен значению *i*-ой весовой функции $w_i(e)$ на ребре e = (j, k), $i = \overline{1, m}, j, k = \overline{1, n}$.

Входы для задач m-CyclesCover и m-ChainsCover

представим в виде $n \times n$ матрицы весов $C = (c_{ij})$, где c_{ij} равен значению w(e) на ребре e = (i, j), $i, j = \overline{1, n}$.

Под случайным входом для этих задач

будем понимать соответствующую матрицу весов *C*, все элементы которой являются независимыми одинаково распределенными случайными величинами.

Определение

Функция распределения $\widetilde{\mathcal{F}}(x)$ является функцией \mathcal{F} -мажорирующего типа, если

$$\widetilde{\mathcal{F}}(x) \geq \mathcal{F}(x)$$
 for every x

Определение

Функция распределения $\widetilde{\mathcal{F}}(x)$ является функцией \mathcal{F} -мажорирующего типа, если \sim

$$\widetilde{\mathcal{F}}(x) \geq \mathcal{F}(x)$$
 for every x

Функции распределения

Мы рассматривали случайные входы для наших задач со следующими функциями распределения

Определение

Функция распределения $\widetilde{\mathcal{F}}(x)$ является функцией \mathcal{F} -мажорирующего типа, если

$$\widetilde{\mathcal{F}}(x) \geq \mathcal{F}(x)$$
 for every x

Функции распределения

Мы рассматривали случайные входы для наших задач со следующими функциями распределения

• UNI $[a_n, b_n]$ -мажорирующего типа, где UNI $[a_n, b_n]$ – равномерное распределение на $[a_n, b_n]$, 0 < $a_n < b_n$;

Определение

Функция распределения $\widetilde{\mathcal{F}}(x)$ является функцией \mathcal{F} -мажорирующего типа, если

$$\widetilde{\mathcal{F}}(x) \geq \mathcal{F}(x)$$
 for every x

Функции распределения

Мы рассматривали случайные входы для наших задач со следующими функциями распределения

- UNI $[a_n, b_n]$ -мажорирующего типа, где UNI $[a_n, b_n]$ равномерное распределение на $[a_n, b_n]$, 0 < a_n < b_n ;
- \mathcal{F}_{β} -мажорирующего типа, где $\mathcal{F}_{\beta}(x)$ – показательное распределение с параметром $\beta = \beta_n$: $(x - a_n)$

$$\mathcal{F}_{\beta}(x) = 1 - \exp\left(\frac{x - a_n}{\beta}\right), \ x \ge a_n > 0.$$

 $H_i = \{e_1^{(i)}, \dots, e_n^{(i)}\} - i$ -ый построенный гамильтонов цикл в m-PSP $C_i = \{e_1^{(i)}, \dots, e_{n_i}^{(i)}\} - i$ -ый построенный цикл(цепь) в задаче m-CC (m-ChC)

 $H_i = \{e_1^{(i)}, \dots, e_n^{(i)}\} - i$ -ый построенный гамильтонов цикл в m-PSP $C_i = \{e_1^{(i)}, \dots, e_{n_i}^{(i)}\} - i$ -ый построенный цикл(цепь) в задаче m-CC (m-ChC)

Оценки качества для алгоритмов, решающих эти задачи, определяются следующими неравенствами:

m-PSP:
$$Pr\left\{\sum_{i=1}^{m}\sum_{s=1}^{n}w_{i}(e_{s}^{(i)})>(1+\varepsilon_{\widetilde{A}})OPT\right\}\leq\delta_{\widetilde{A}}.$$

m-CC:
$$Pr\left\{\sum_{i=1}^{m}\sum_{s=1}^{n_i}w(e_s^{(i)})>(1+\varepsilon_{\widetilde{A}})OPT\right\}\leq \delta_{\widetilde{A}}.$$

 $H_i = \{e_1^{(i)}, \dots, e_n^{(i)}\} - i$ -ый построенный гамильтонов цикл в m-PSP $C_i = \{e_1^{(i)}, \dots, e_{n_i}^{(i)}\} - i$ -ый построенный цикл(цепь) в задаче m-CC (m-ChC)

Оценки качества для алгоритмов, решающих эти задачи, определяются следующими неравенствами:

m-PSP:
$$Pr\left\{\sum_{i=1}^{m}\sum_{s=1}^{n}w_{i}(e_{s}^{(i)})>(1+\varepsilon_{\widetilde{A}})OPT\right\}\leq\delta_{\widetilde{A}}.$$

m-CC:
$$Pr\left\{\sum_{i=1}^{m}\sum_{s=1}^{n_i}w(e_s^{(i)})>(1+\varepsilon_{\widetilde{A}})OPT\right\}\leq \delta_{\widetilde{A}}.$$

Положим $\xi_{is} = w_i(e_s^{(i)})$

16 of 29

Все веса *ξ_{is}* выбранных алгоритмом ребер – независимые случайные величины.

- Все веса *ξ_{is}* выбранных алгоритмом ребер независимые случайные величины.
- Вес ξ_{is} ребра, выбранного в жадной части алгоритма, оценивается сверху как минимум из

$$\begin{cases} n-2i-s+2 & \text{for } m-\text{PSP} \\ n-(i-1)n/m - s - 1 & \text{for } m-\text{CC-problem} \\ n-(i-1)n/m - s & \text{for } m-\text{ChC-problem} \end{cases}$$

элементов матрицы случайного входа.

- Все веса *ξ_{is}* выбранных алгоритмом ребер независимые случайные величины.
- Вес ξ_{is} ребра, выбранного в жадной части алгоритма, оценивается сверху как минимум из

$$\begin{cases} n-2i-s+2 & \text{for m-PSP} \\ n-(i-1)n/m - s - 1 & \text{for m-CC-problem} \\ n-(i-1)n/m - s & \text{for m-ChC-problem} \end{cases}$$

элементов матрицы случайного входа.

 Веса ребер, выбранных не в жадной части алгоритма, имеют то же распределение, что и элементы входа.

- Все веса *ξ*_{is} выбранных алгоритмом ребер независимые случайные величины.
- Вес ξ_{is} ребра, выбранного в жадной части алгоритма, оценивается сверху как минимум из

$$\begin{cases} n-2i-s+2 & \text{for m-PSP} \\ n-(i-1)n/m - s - 1 & \text{for m-CC-problem} \\ n-(i-1)n/m - s & \text{for m-ChC-problem} \end{cases}$$

элементов матрицы случайного входа.

- Веса ребер, выбранных не в жадной части алгоритма, имеют то же распределение, что и элементы входа.
- Используем очевидное неравенство *OPT* ≥ *a*_n*mn*

- Все веса *ξ*_{is} выбранных алгоритмом ребер независимые случайные величины.
- Вес ξ_{is} ребра, выбранного в жадной части алгоритма, оценивается сверху как минимум из

$$\begin{cases} n-2i-s+2 & \text{for m-PSP} \\ n-(i-1)n/m - s - 1 & \text{for m-CC-problem} \\ n-(i-1)n/m - s & \text{for m-ChC-problem} \end{cases}$$

элементов матрицы случайного входа.

- Веса ребер, выбранных не в жадной части алгоритма, имеют то же распределение, что и элементы входа.
- Используем очевидное неравенство *OPT* ≥ *a_nmn*
- Используем теорему Петрова.

17 of 29

Петров В.В. Предельные теоремы для сумм независимых случайных величин, 1987

Theorem

Пусть η_1, \ldots, η_n – независимые случайные величины и $S = \sum_{k=1}^n \eta_k$. Если для некоторых положительных постоянных g_1, \ldots, g_n и T

$$\mathbf{E}e^{t\eta_k} \leq e^{\frac{\mathbf{g}_k t^2}{2}}, \ 0 \leq t \leq T, \ k = 1, \dots, n,$$

то

$$\mathbf{Pr}\{S \ge x\} \le \begin{cases} e^{\frac{-x^2}{2G}}, & 0 \le x \le \mathcal{GT}, \\ e^{\frac{-Tx}{2}}, & x \ge \mathcal{GT} \end{cases}$$

Здесь $\mathbf{E}X$ – мат.ожидание случайной величины X, а $\mathcal{G} = \Sigma_{k=1}^n g_k$.

Для применения теоремы Петрова к нашим задачам, мы адаптировали постоянные g_1, \ldots, g_n и T из результатов статей:

Для применения теоремы Петрова к нашим задачам, мы адаптировали постоянные g_1, \ldots, g_n и T из результатов статей:

For uniform distribution function:

E. Kh. Gimadi,Yu. V. Glazkov *An asymptotically exact algorithm for one modification of planar three-index assignment problem*// Journal of Applied and Industrial Mathematics December 2007, Volume 1, Issue 4, pp 442-452

Для применения теоремы Петрова к нашим задачам, мы адаптировали постоянные g_1, \ldots, g_n и T из результатов статей:

For uniform distribution function:

E. Kh. Gimadi,Yu. V. Glazkov *An asymptotically exact algorithm for one modification of planar three-index assignment problem*// Journal of Applied and Industrial Mathematics December 2007, Volume 1, Issue 4, pp 442-452

For exponential distribution function:

E. Kh. Gimadi, A. Le Gallou, A. V. Shakhshneyder, *Probabilistic analysis of an approximation algorithm for the traveling salesman problem on unbounded above instances*// Journal of Applied and Industrial Mathematics April 2009, Volume 3, Issue 2, pp 207-221

Для случайных входов с функцией распределения UNI $[a_n, b_n]$ -мажорирующего типа, $0 < a_n < b_n$, приведенные алгоритмы для данных задач будут асимптотически точными

Для случайных входов с функцией распределения UNI $[a_n, b_n]$ -мажорирующего типа, $0 < a_n < b_n$, приведенные алгоритмы для данных задач будут асимптотически точными

• при 2 ≤ *m* ≤ ln *n*

$$arepsilon_{\widetilde{A}} = O\left(rac{b_n/a_n}{n/\ln n}
ight), \quad \delta_{\widetilde{A}} = n^{-9},$$
если $rac{b_n}{a_n} = o\left(rac{n}{\ln n}
ight);$

Для случайных входов с функцией распределения UNI $[a_n, b_n]$ -мажорирующего типа, $0 < a_n < b_n$, приведенные алгоритмы для данных задач будут асимптотически точными

• при 2 ≤ *m* ≤ ln *n*

$$arepsilon_{\widetilde{A}} = O\left(rac{b_n/a_n}{n/\ln n}
ight), \quad \delta_{\widetilde{A}} = n^{-9}$$
если $rac{b_n}{a_n} = o\left(rac{n}{\ln n}
ight);$

• при ln $n < m \leq n^{1- heta}, heta \in (0,1)$

$$\varepsilon_{\widetilde{A}} = O\Big(\frac{b_n/a_n}{n^{\theta}}\Big), \ \ \delta_{\widetilde{A}} = n^{-9},$$

если
$$\frac{b_n}{a_n} = o(n^{\theta}).$$

20 of 29

Для случайных входов с функцией распределения, мажорирующей показательное распределение \mathcal{F}_{β} , приведенные алгоритмы для данных задач будут асимптотически точными

Для случайных входов с функцией распределения, **мажорирующей** показательное распределение \mathcal{F}_{β} , приведенные алгоритмы для данных задач будут асимптотически точными

• для 2 ≤ *m* ≤ ln *n*

$$arepsilon_{\widetilde{A}} = O\left(rac{eta/a_n}{n/\ln n}
ight), \quad \delta_{\widetilde{A}} = n^{-3m/4},$$
если $rac{eta}{a_n} = o\left(rac{n}{\ln n}
ight);$

Для случайных входов с функцией распределения, **мажорирующей** показательное распределение \mathcal{F}_{β} , приведенные алгоритмы для данных задач будут асимптотически точными

• для 2 ≤ *m* ≤ ln *n*

$$arepsilon_{\widetilde{A}} = O\left(\frac{\beta/a_n}{n/\ln n}\right), \quad \delta_{\widetilde{A}} = n^{-3m/4},$$

если $\frac{\beta}{a_n} = o\left(\frac{n}{\ln n}\right);$

• для $\ln n < m \leq n^{1- heta}, heta \in (0,1)$

$$\varepsilon_{\widetilde{A}} = O\Big(\frac{\beta/a_n}{n^{\theta}}\Big), \ \ \delta_{\widetilde{A}} = n^{-3m/4},$$

если
$$\frac{\beta}{a_n} = o(n^{\theta}).$$

21 of 29

Следствие

Нормальное рспределение с подходящими параметрами мажорирует показательное.

Оценки качества алгоритмов, полученные для случайных входов с показательным распределением с параметром β и средним a_n , будут верны для входов с усеченным нормальным распределением с параметром $\sigma = \frac{\beta}{2}$ и средним a_n .

- 1. Для труднорешаемых задач маршрутизации m-PSP, m-CyclesCover и m-ChainsCover были построены простые полиномиальные алгоритмы.
- 2. Для случайных входов с распределениями, мажорирующими равномерное или показательное, проведен вероятностный анализ алгоритмов и получены оценки их качества.
- 3. Найдены достаточные условия асимптотической точности этих алгоритмов.

Спасибо за внимание!

Показательное распределение

$$p(x) = \begin{cases} \frac{1}{\beta_n} \exp\left(-\frac{x-a_n}{\beta_n}\right), &$$
если $a_n \le x \le \infty, \\ 0, &$ в противном случае.

Усеченное нормальное распределение

$$p(x) = \begin{cases} rac{2}{\sqrt{2\pi\sigma_n^2}} \exp\left(-rac{(x-a_n)^2}{2\sigma_n^2}
ight), &$$
если $a_n \le x \le \infty, \\ 0, &$ в противном случае.

25 of 29

Оценки качества алгоритма, полученные для входных данных с рассмотренными распределениями, будут верны и для соответствующих распределений мажорирующего типа.

Утверждение 1

Пусть $\xi_1, ..., \xi_k$ независимые случайные величины с распределением F(x), а $\hat{F}(x)$ функция распределения случайной величины $\xi = \min(\xi_1, ..., \xi_k)$, Пусть $\eta_1, ..., \eta_k$ независимые случайные величины с распределением G(x), а $\hat{G}(x)$ функция распределения случайной величины $\eta = \min(\eta_1, ..., \eta_k)$.

Тогда для всех х

$$F(x) \leq G(x) \Rightarrow \hat{F}(x) \leq \hat{G}(x).$$

Оценки качества алгоритма, полученные для входных данных с рассмотренными распределениями, будут верны и для соответствующих распределений мажорирующего типа.

Утверждение 1

Пусть $\xi_1, ..., \xi_k$ независимые случайные величины с распределением F(x), а $\hat{F}(x)$ функция распределения случайной величины $\xi = \min(\xi_1, ..., \xi_k)$, Пусть $\eta_1, ..., \eta_k$ независимые случайные величины с распределением G(x), а $\hat{G}(x)$ функция распределения случайной величины $\eta = \min(\eta_1, ..., \eta_k)$.

Тогда для всех х

$$F(x) \leq G(x) \Rightarrow \hat{F}(x) \leq \hat{G}(x).$$

Оценки качества алгоритма, полученные для входных данных с рассмотренными распределениями, будут верны и для соответствующих распределений мажорирующего типа.

Утверждение 1

Пусть $\xi_1, ..., \xi_k$ независимые случайные величины с распределением F(x), а $\hat{F}(x)$ функция распределения случайной величины $\xi = \min(\xi_1, ..., \xi_k)$, Пусть $\eta_1, ..., \eta_k$ независимые случайные величины с распределением G(x), а $\hat{G}(x)$ функция распределения случайной величины $\eta = \min(\eta_1, ..., \eta_k)$.

Тогда для всех х

$$F(x) \leq G(x) \Rightarrow \hat{F}(x) \leq \hat{G}(x).$$

Доказательство следует из

$$\hat{F}(x) = 1 - (1 - F(x))^k$$
 and $\hat{G}(x) = 1 - (1 - G(x))^k$.

26 of 29

Утверждение 2

Пусть $P_{\xi}, P_{\eta}, P_{\zeta}, P_{\chi}$ функции распределения случайных величин ξ, η, ζ, χ , соответственно. И пусть ξ и ζ независимые, η и χ независимые случайные величины. Тогда

$$(\forall x \ P_{\xi}(x) \leq P_{\eta}(x)) \land (\forall y \ P_{\zeta}(y) \leq P_{\chi}(y)) \Rightarrow (\forall z \ P_{\xi+\zeta}(z) \leq P_{\eta+\chi}(z)).$$

Доказательство

$$P_{\xi+\zeta}(x) = \int\limits_{-\infty}^{\infty} P_{\xi}(x-y) dP_{\zeta}(y) \leq \int\limits_{-\infty}^{\infty} P_{\eta}(x-y) dP_{\zeta}(y)$$

$$=P_{\eta+\zeta}(x)=\int_{-\infty}^{\infty}P_{\zeta}(x-y)dP_{\eta}(y)\leq\int_{-\infty}^{\infty}P_{\chi}(x-y)dP_{\eta}(y)=P_{\eta+\chi}(x).$$

27 of 29

 Проведенный анализ содержал только перобразования рассмотренные в утверждениях 1-2

- Проведенный анализ содержал только перобразования рассмотренные в утверждениях 1-2
- Все веса ребер решения задачи m-PSP независимые случайные величины

- Проведенный анализ содержал только перобразования рассмотренные в утверждениях 1-2
- Все веса ребер решения задачи m-PSP независимые случайные величины
- Т.о. для входных данных с функциями распределения UNI[a_n, b_n]-мажорирующего типа, и показательного *F*_β-мажорирующего типа, алгоритм будет асимптотически точен с соответствующими оценками качества.

Correctness of the procedure ${\mathbb P}$

• Suppose, there is no edge $\{u_i, u_{i+1}\} \in P$ such that $\{u_k, u_i\}$ and $\{w, u_{i+1}\} \in E_H$.

Correctness of the procedure $\ensuremath{\mathbb{P}}$

- Suppose, there is no edge $\{u_i, u_{i+1}\} \in P$ such that $\{u_k, u_i\}$ and $\{w, u_{i+1}\} \in E_H$.
- There are $> \hat{n}/2$ vertices adjacent to w.

Correctness of the procedure ${\mathbb P}$

- Suppose, there is no edge $\{u_i, u_{i+1}\} \in P$ such that $\{u_k, u_i\}$ and $\{w, u_{i+1}\} \in E_H$.
- There are $> \hat{n}/2$ vertices adjacent to w.
- Vertices not adjacent to w: w, u_k , and u_{i+1} , where $i : \{u_k, u_i\} \in E_H$.

Correctness of the procedure ${\mathbb P}$

- Suppose, there is no edge $\{u_i, u_{i+1}\} \in P$ such that $\{u_k, u_i\}$ and $\{w, u_{i+1}\} \in E_H$.
- There are $> \hat{n}/2$ vertices adjacent to w.
- Vertices not adjacent to w: w, u_k , and u_{i+1} , where $i : \{u_k, u_i\} \in E_H$.
- So there are $> 1 + 1 + \hat{n}/2 2 = \hat{n}/2$ vertices that are not adjacent to w.

Correctness of the procedure $\ensuremath{\mathbb{P}}$

- Suppose, there is no edge $\{u_i, u_{i+1}\} \in P$ such that $\{u_k, u_i\}$ and $\{w, u_{i+1}\} \in E_H$.
- There are $> \hat{n}/2$ vertices adjacent to w.
- Vertices not adjacent to w: w, u_k , and u_{i+1} , where $i : \{u_k, u_i\} \in E_H$.
- So there are $> 1 + 1 + \hat{n}/2 2 = \hat{n}/2$ vertices that are not adjacent to w. Contradiction.