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History	  of	  neural	  nets	  and	  
deep	  learning	  

•  Invented	  –	  1960’s	  
•  Backpropaga0on	  –	  1974	  
•  RBMs	  and	  DBMs	  –	  2000	  
•  Autoencoders	  –	  2006	  
•  Dropout	  –	  2012	  
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WheQng	  your	  appe0te	  

•  Win	  different	  compe00ons	  since	  2009	  
•  Hinton’s	  team	  is	  bought	  by	  Google	  in	  2013	  
•  State	  of	  the	  art	  now	  
–  Image	  recogni0on	  
– Speech	  recogni0on	  
– Sen0ment	  analysis	  
– Paraphrase	  detec0on	  
– etc	  
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Figure 1: A feedforward network.
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Figure 2: A simple recurrent network.
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Language	  modeling	  

BENGIO, DUCHARME, VINCENT AND JAUVIN

mated, and when the number of values that each discrete variable can take is large, most observed
objects are almost maximally far from each other in hamming distance.

A useful way to visualize how different learning algorithms generalize, inspired from the view of
non-parametric density estimation, is to think of how probability mass that is initially concentrated
on the training points (e.g., training sentences) is distributed in a larger volume, usually in some form
of neighborhood around the training points. In high dimensions, it is crucial to distribute probability
mass where it matters rather than uniformly in all directions around each training point. We will
show in this paper that the way in which the approach proposed here generalizes is fundamentally
different from the way in which previous state-of-the-art statistical language modeling approaches
are generalizing.

A statistical model of language can be represented by the conditional probability of the next
word given all the previous ones, since

P̂(wT1 ) =
T

∏
t=1

P̂(wt |wt−11 ),

where wt is the t-th word, and writing sub-sequence wji = (wi,wi+1, · · · ,wj−1,wj). Such statisti-
cal language models have already been found useful in many technological applications involving
natural language, such as speech recognition, language translation, and information retrieval. Im-
provements in statistical language models could thus have a significant impact on such applications.

When building statistical models of natural language, one considerably reduces the difficulty
of this modeling problem by taking advantage of word order, and the fact that temporally closer
words in the word sequence are statistically more dependent. Thus, n-gram models construct ta-
bles of conditional probabilities for the next word, for each one of a large number of contexts, i.e.
combinations of the last n−1 words:

P̂(wt |wt−11 )≈ P̂(wt |wt−1t−n+1).

We only consider those combinations of successive words that actually occur in the training cor-
pus, or that occur frequently enough. What happens when a new combination of n words appears
that was not seen in the training corpus? We do not want to assign zero probability to such cases,
because such new combinations are likely to occur, and they will occur even more frequently for
larger context sizes. A simple answer is to look at the probability predicted using a smaller context
size, as done in back-off trigram models (Katz, 1987) or in smoothed (or interpolated) trigram mod-
els (Jelinek and Mercer, 1980). So, in such models, how is generalization basically obtained from
sequences of words seen in the training corpus to new sequences of words? A way to understand
how this happens is to think about a generative model corresponding to these interpolated or back-
off n-gram models. Essentially, a new sequence of words is generated by “gluing” very short and
overlapping pieces of length 1, 2 ... or up to n words that have been seen frequently in the training
data. The rules for obtaining the probability of the next piece are implicit in the particulars of the
back-off or interpolated n-gram algorithm. Typically researchers have used n = 3, i.e. trigrams,
and obtained state-of-the-art results, but see Goodman (2001) for how combining many tricks can
yield to substantial improvements. Obviously there is much more information in the sequence that
immediately precedes the word to predict than just the identity of the previous couple of words.
There are at least two characteristics in this approach which beg to be improved upon, and that we
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Figure 3: A “tapped delay line” feedforward network.

4 Tapped delay line memory

The perhaps easiest way to incorporate temporal or sequential information into a training
situation is to make the temporal domain spatial and use a feedforward architecture.
Information available back in time is inserted by widening the input space according to
a fixed and pre-determined “window” size, X = x(t),x(t° 1),x(t° 2), ...,x(t° !) (see
Figure 3). This is often called a tapped delay line since inputs are put in a delayed buffer
and discretely shifted as time passes.

It is also possible to manually extend this approach by selecting certain intervals “back
in time” over which one uses an average or other pre-processed features as inputs which
may reflect the signal decay.

The classical example of this approach is the NETtalk system (Sejnowski and Rosen-
berg, 1987) which learns from example to pronounce English words displayed in text at
the input. The network accepts seven letters at a time of which only the middle one is
pronounced.

Disadvantages include that the user has to select the maximum number of time steps
which is useful to the network. Moreover, the use of independent weights for processing
the same components but in different time steps, harms generalization. In addition, the
large number of weights requires a larger set of examples to avoid over-specialization.

5 Simple recurrent network

A strict feedforward architecture does not maintain a short-term memory. Any memory
effects are due to the way past inputs are re-presented to the network (as for the tapped
delay line).
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Figure 4: A simple recurrent network.

A simple recurrent network (SRN; (Elman, 1990)) has activation feedback which em-
bodies short-term memory. A state layer is updated not only with the external input of
the network but also with activation from the previous forward propagation. The feed-
back is modified by a set of weights as to enable automatic adaptation through learning
(e.g. backpropagation).

5.1 Learning in SRNs: Backpropagation through time

In the original experiments presented by Jeff Elman (Elman, 1990) so-called truncated
backpropagation was used. This basically means that yj(t ° 1) was simply regarded as
an additional input. Any error at the state layer, ±j(t), was used to modify weights from
this additional input slot (see Figure 4).

Errors can be backpropagated even further. This is called backpropagation through
time (BPTT; (Rumelhart et al., 1986)) and is a simple extension of what we have seen
so far. The basic principle of BPTT is that of “unfolding.” All recurrent weights can
be duplicated spatially for an arbitrary number of time steps, here referred to as ø .
Consequently, each node which sends activation (either directly or indirectly) along a
recurrent connection has (at least) ø number of copies as well (see Figure 5).

In accordance with Equation 13, errors are thus backpropagated according to

±pj(t° 1) =
mX

h

±ph(t)uhjf
0(ypj(t° 1)) (27)

where h is the index for the activation receiving node and j for the sending node (one time
step back). This allows us to calculate the error as assessed at time t, for node outputs
(at the state or input layer) calculated on the basis of an arbitrary number of previous
presentations.
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natural language, such as speech recognition, language translation, and information retrieval. Im-
provements in statistical language models could thus have a significant impact on such applications.

When building statistical models of natural language, one considerably reduces the difficulty
of this modeling problem by taking advantage of word order, and the fact that temporally closer
words in the word sequence are statistically more dependent. Thus, n-gram models construct ta-
bles of conditional probabilities for the next word, for each one of a large number of contexts, i.e.
combinations of the last n−1 words:

P̂(wt |wt−11 )≈ P̂(wt |wt−1t−n+1).

We only consider those combinations of successive words that actually occur in the training cor-
pus, or that occur frequently enough. What happens when a new combination of n words appears
that was not seen in the training corpus? We do not want to assign zero probability to such cases,
because such new combinations are likely to occur, and they will occur even more frequently for
larger context sizes. A simple answer is to look at the probability predicted using a smaller context
size, as done in back-off trigram models (Katz, 1987) or in smoothed (or interpolated) trigram mod-
els (Jelinek and Mercer, 1980). So, in such models, how is generalization basically obtained from
sequences of words seen in the training corpus to new sequences of words? A way to understand
how this happens is to think about a generative model corresponding to these interpolated or back-
off n-gram models. Essentially, a new sequence of words is generated by “gluing” very short and
overlapping pieces of length 1, 2 ... or up to n words that have been seen frequently in the training
data. The rules for obtaining the probability of the next piece are implicit in the particulars of the
back-off or interpolated n-gram algorithm. Typically researchers have used n = 3, i.e. trigrams,
and obtained state-of-the-art results, but see Goodman (2001) for how combining many tricks can
yield to substantial improvements. Obviously there is much more information in the sequence that
immediately precedes the word to predict than just the identity of the previous couple of words.
There are at least two characteristics in this approach which beg to be improved upon, and that we
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Figure 5: The effect of unfolding a network for BPTT (ø = 3).
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for each target position i the conditional probability
P (f
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|f1:i�1, e) of the target word f
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occurring in the
translation at position i, given the preceding target
words f1:i�1 and the source sentence e. We see that
an RCTM is sensitive not just to the source sentence
e but also to the preceding words f1:i�1 in the target
sentence; by doing so it incorporates a model of the
target language itself.

To model the conditional probability P (f|e), an
RCTM comprises both a generative architecture for
the target sentence and an architecture for condition-
ing the latter on the source sentence. To fully cap-
ture Eq. 1, we model the generative architecture with
a recurrent language model (RLM) based on a re-
current neural network (Mikolov et al., 2010). The
prediction of the i-th word f

i

in a RLM depends on
all the preceding words f1:i�1 in the target sentence
ensuring that conditional independence assumptions
are not introduced in Eq. 1. Although the predic-
tion is most strongly influenced by words closely
preceding f

i

, long-range dependencies from across
the whole sentence can also be exhibited. The con-
ditioning architectures are model specific and are
treated in Sect. 3-4. Both the generative and con-
ditioning aspects of the models deploy continuous
representations for the constituents and are trained
as a single joint architecture. Given the modelling
framework underlying RCTMs, we now proceed to
describe in detail the recurrent language model un-
derlying the generative aspect.

2.1 Recurrent Language Model
A RLM models the probability P (f) that the se-
quence of words f occurs in a given language. Let
f = f1, ..., fm be a sequence of m words, e.g. a sen-
tence in the target language. Analogously to Eq. 1,
using the identity,

P (f) =

mY
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P (f
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|f1:i�1) (2)

the model explicitly computes without simpli-
fying assumptions the conditional distributions
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Figure 1: A RLM (left) and its unravelling to depth 3
(right). The recurrent transformation is applied to the hid-
den layer hi�1 and the result is summed to the represen-
tation for the current word fi. After a non-linear transfor-
mation, a probability distribution over the next word fi+1

is predicted.

P (f

i

|f1:i�1). The architecture of a RLM comprises
a vocabulary V that contains the words f

i

of the
language as well as three transformations: an in-
put vocabulary transformation I 2 Rq⇥|V |, a re-
current transformation R 2 Rq⇥q and an output
vocabulary transformation O 2 R|V |⇥q. For each
word f

k

2 V , we indicate by i(f

k

) its index in V

and by v(f

k

) 2 R|V |⇥1 an all zero vector with only
v(f

k

)i(fk) = 1.
For a word f

i

, the result of I · v(f
i

) 2 Rq⇥1 is
the input continuous representation of f

i

. The pa-
rameter q governs the size of the word representa-
tion. The prediction proceeds by successively ap-
plying the recurrent transformation R to the word
representations and predicting the next word at each
step. In detail, the computation of each P (f

i

|f1:i�1)

proceeds recursively. For 1 < i < m,

h1 = �(I · v(f1)) (3a)
h

i+1 = �(R · h
i

+ I · v(f
i+1)) (3b)

o

i+1 = O · h
i

(3c)

and the conditional distribution is given by,

P (f

i

= v|f1:i�1) =
exp (o

i,v

)

P
V

v=1 exp(oi,v)
(4)

In Eq. 3, � is a nonlinear function such as tanh. Bias
values b

h

and b

o

are included in the computation. An
illustration of the RLM is given in Fig. 1.

The RLM is trained by backpropagation through
time (Mikolov et al., 2010). The error in the pre-
dicted distribution calculated at the output layer is
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sentence; by doing so it incorporates a model of the
target language itself.

To model the conditional probability P (f|e), an
RCTM comprises both a generative architecture for
the target sentence and an architecture for condition-
ing the latter on the source sentence. To fully cap-
ture Eq. 1, we model the generative architecture with
a recurrent language model (RLM) based on a re-
current neural network (Mikolov et al., 2010). The
prediction of the i-th word f

i

in a RLM depends on
all the preceding words f1:i�1 in the target sentence
ensuring that conditional independence assumptions
are not introduced in Eq. 1. Although the predic-
tion is most strongly influenced by words closely
preceding f

i

, long-range dependencies from across
the whole sentence can also be exhibited. The con-
ditioning architectures are model specific and are
treated in Sect. 3-4. Both the generative and con-
ditioning aspects of the models deploy continuous
representations for the constituents and are trained
as a single joint architecture. Given the modelling
framework underlying RCTMs, we now proceed to
describe in detail the recurrent language model un-
derlying the generative aspect.

2.1 Recurrent Language Model
A RLM models the probability P (f) that the se-
quence of words f occurs in a given language. Let
f = f1, ..., fm be a sequence of m words, e.g. a sen-
tence in the target language. Analogously to Eq. 1,
using the identity,

P (f) =

mY

i=1

P (f

i

|f1:i�1) (2)

the model explicitly computes without simpli-
fying assumptions the conditional distributions
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Figure 1: A RLM (left) and its unravelling to depth 3
(right). The recurrent transformation is applied to the hid-
den layer hi�1 and the result is summed to the represen-
tation for the current word fi. After a non-linear transfor-
mation, a probability distribution over the next word fi+1

is predicted.

P (f

i

|f1:i�1). The architecture of a RLM comprises
a vocabulary V that contains the words f

i

of the
language as well as three transformations: an in-
put vocabulary transformation I 2 Rq⇥|V |, a re-
current transformation R 2 Rq⇥q and an output
vocabulary transformation O 2 R|V |⇥q. For each
word f

k

2 V , we indicate by i(f

k

) its index in V

and by v(f

k

) 2 R|V |⇥1 an all zero vector with only
v(f

k

)i(fk) = 1.
For a word f

i

, the result of I · v(f
i

) 2 Rq⇥1 is
the input continuous representation of f

i

. The pa-
rameter q governs the size of the word representa-
tion. The prediction proceeds by successively ap-
plying the recurrent transformation R to the word
representations and predicting the next word at each
step. In detail, the computation of each P (f

i

|f1:i�1)

proceeds recursively. For 1 < i < m,

h1 = �(I · v(f1)) (3a)
h

i+1 = �(R · h
i

+ I · v(f
i+1)) (3b)

o

i+1 = O · h
i

(3c)

and the conditional distribution is given by,

P (f

i

= v|f1:i�1) =
exp (o

i,v

)

P
V

v=1 exp(oi,v)
(4)

In Eq. 3, � is a nonlinear function such as tanh. Bias
values b

h

and b

o

are included in the computation. An
illustration of the RLM is given in Fig. 1.

The RLM is trained by backpropagation through
time (Mikolov et al., 2010). The error in the pre-
dicted distribution calculated at the output layer is
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Table 4: Comparison of very large back-off LMs and RNN LMs
trained only on limited in-domain data (5.4M words).

Model WER static WER dynamic
RT05 LM 24.5 -
RT09 LM - baseline 24.1 -
KN5 in-domain 25.7 -
RNN 500/10 in-domain 24.2 24.1
RNN 500/10 + RT09 LM 23.3 23.2
RNN 800/10 in-domain 24.3 23.8
RNN 800/10 + RT09 LM 23.4 23.1
RNN 1000/5 in-domain 24.2 23.7
RNN 1000/5 + RT09 LM 23.4 22.9
3xRNN + RT09 LM 23.3 22.8

traction use 13 Mel-PLP’s features with deltas, double and triple
deltas reduced by HLDA to 39-dimension feature vector. VTLN
warping factors were applied to the outputs of Mel filterbanks.
The amount of training data was 115 hours of meeting speech
from ICSI, NIST, ISL and AMI training corpora.

Four gram LM used in AMI system was trained on vari-
ous data sources, see description in [13]. Total amount of LM
training data was more than 1.3G words. This LM is denoted as
RT05 LM in table 4. The RT09 LM was extended by additional
CHIL and web data. Next change was in lowering cut-offs, e.g.
the minimum count for 4-grams was set to 3 instead of 4. To
train the RNN LM, we selected in domain data that consists
of meeting transcriptions and Switchboard corpus, for a total
of 5.4M words – RNN training was too time consuming with
more data. This means that RNNs are trained on tiny subset
of the data that are used to construct the RT05 and RT09 LMs.
Table 4 compares the performance of these LMs on RT05.

5. Conclusion and future work
Recurrent neural networks outperformed significantly state of
the art backoff models in all our experiments, most notably even
in case when backoff models were trained on much more data
than RNN LMs. In WSJ experiments, word error rate reduction
is around 18% for models trained on the same amount of data,
and 12% when backoff model is trained on 5 times more data
than RNN model. For NIST RT05, we can conclude that models
trained on just 5.4M words of in-domain data can outperform
big backoff models, which are trained on hundreds times more
data. Obtained results are breaking myth that language model-
ing is just about counting n-grams, and that the only reasonable
way how to improve results is by acquiring new training data.

Perplexity improvements reported in Table 2 are one of the
largest ever reported on similar data set, with very significant
effect of on-line learning (also called dynamic models in this
paper, and in context of speech recognition very similar to un-
supervised LM training techniques). While WER is affected
just slightly and requires correct ordering of testing data, on-
line learning should be further investigated as it provides natural
way how to obtain cache-like and trigger-like information (note
that for data compression, on-line techniques for training pre-
dictive neural networks have been already studied for example
by Mahoney [14]). If we want to build models that can really
learn language, then on-line learning is crucial - acquiring new
information is definitely important.

It is possible that further investigation into backpropagation
through time algorithm for learning recurrent neural networks

will provide additional improvements. Preliminary results on
toy tasks are promising. However, it does not seem that simple
recurrent neural networks can capture truly long context infor-
mation, as cache models still provide complementary informa-
tion even to dynamic models trained with BPTT. Explanation is
discussed in [6].

As we did not make any task or language specific assump-
tion in our work, it is easy to use RNN based models almost ef-
fortlessly in any kind of application that uses backoff language
models, like machine translation or OCR. Especially tasks in-
volving inflectional languages or languages with large vocabu-
lary might benefit from using NN based models, as was already
shown in [12].

Besides very good results reported in our work, we find pro-
posed recurrent neural network model interesting also because
it connects language modeling more closely to machine learn-
ing, data compression and cognitive sciences research. We hope
that these connections will be better understood in the future.
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Open the pod bay doors HAL

m = 2

m = 3

backpropagated through the recurrent layers and cu-
mulatively added to the errors of the previous predic-
tions for a given number d of steps. The procedure is
equivalent to standard backpropagation over a RLM
that is unravelled to depth d as in Fig. 1.

RCTMs may be thought of as RLMs, in which
the predicted distributions for each word f

i

are con-
ditioned on the source sentence e. We next define
two conditioning architectures each giving rise to a
specific RCTM.

3 Recurrent Continuous Translation
Model I

The RCTM I uses a convolutional sentence model
(CSM) in the conditioning architecture. The CSM
creates a representation for a sentence that is pro-
gressively built up from representations of the n-
grams in the sentence. The CSM embodies a hierar-
chical structure. Although it does not make use of an
explicit parse tree, the operations that generate the
representations act locally on small n-grams in the
lower layers of the model and act increasingly more
globally on the whole sentence in the upper layers
of the model. The lack of the need for a parse tree
yields two central advantages over sentence models
that require it (Grefenstette et al., 2011; Socher et
al., 2012). First, it makes the model robustly appli-
cable to a large number of languages for which accu-
rate parsers are not available. Secondly, the transla-
tion probability distribution over the target sentences
does not depend on the chosen parse tree.

The RCTM I conditions the probability of each
target word f

i

on the continuous representation of the
source sentence e generated through the CSM. This
is accomplished by adding the sentence representa-
tion to each hidden layer h

i

in the target recurrent
language model. We next describe the procedure in
more detail, starting with the CSM itself.

3.1 Convolutional Sentence Model

The CSM models the continuous representation of
a sentence based on the continuous representations
of the words in the sentence. Let e = e1...e

k

be
a sentence in a language and let v(e

i

) 2 Rq⇥1 be
the continuous representation of the word e

i

. Let
Ee 2 Rq⇥k be the sentence matrix for e defined by,

Ee
:,i = v(e

i

) (5)
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M M M:,1 :,2 :,3
the cat sat on the mat
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Figure 2: A CSM for a six word source sentence e and the
computed sentence representation e. K2

,K3 are weight
matrices and L3 is a top weight matrix. To the right, an
instance of a one-dimensional convolution between some
weight matrix Ki and a generic matrix M that could for
instance correspond to Ee

2. The color coding of weights
indicates weight sharing.

The main component of the architecture of the CSM
is a sequence of weight matrices (Ki

)2ir

that cor-
respond to the kernels or filters of the convolution
and can be thought of as learnt feature detectors.
From the sentence matrix Ee the CSM computes a
continuous vector representation e 2 Rq⇥1 for the
sentence e by applying a sequence of convolutions
to Ee whose weights are given by the weight matri-
ces. The weight matrices and the sequence of con-
volutions are defined next.

We denote by (Ki

)2ir

a sequence of weight
matrices where each Ki 2 Rq⇥i is a matrix of i

columns and r = d
p
2Ne, where N is the length of

the longest source sentence in the training set. Each
row of Ki is a vector of i weights that is treated as
the kernel or filter of a one-dimensional convolution.
Given for instance a matrix M 2 Rq⇥j where the
number of columns j � i, each row of Ki can be
convolved with the corresponding row in M, result-
ing in a matrix Ki ⇤ M, where ⇤ indicates the con-
volution operation and (Ki ⇤M) 2 Rq⇥(j�i+1). For
i = 3, the value (Ki ⇤M):,a is computed by:

Ki

:,1�M:,a+Ki

:,2�M:,a+1+Ki

:,3�M:,a+2 (6)

where � is component-wise vector product. Ap-
plying the convolution kernel Ki yields a matrix
(Ki⇤M) that has i�1 columns less than the original
matrix M.

Given a source sentence of length k, the CSM
convolves successively with the sentence matrix Ee

backpropagated through the recurrent layers and cu-
mulatively added to the errors of the previous predic-
tions for a given number d of steps. The procedure is
equivalent to standard backpropagation over a RLM
that is unravelled to depth d as in Fig. 1.

RCTMs may be thought of as RLMs, in which
the predicted distributions for each word f
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are con-
ditioned on the source sentence e. We next define
two conditioning architectures each giving rise to a
specific RCTM.
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creates a representation for a sentence that is pro-
gressively built up from representations of the n-
grams in the sentence. The CSM embodies a hierar-
chical structure. Although it does not make use of an
explicit parse tree, the operations that generate the
representations act locally on small n-grams in the
lower layers of the model and act increasingly more
globally on the whole sentence in the upper layers
of the model. The lack of the need for a parse tree
yields two central advantages over sentence models
that require it (Grefenstette et al., 2011; Socher et
al., 2012). First, it makes the model robustly appli-
cable to a large number of languages for which accu-
rate parsers are not available. Secondly, the transla-
tion probability distribution over the target sentences
does not depend on the chosen parse tree.

The RCTM I conditions the probability of each
target word f
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on the continuous representation of the
source sentence e generated through the CSM. This
is accomplished by adding the sentence representa-
tion to each hidden layer h
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in the target recurrent
language model. We next describe the procedure in
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Figure 2: A CSM for a six word source sentence e and the
computed sentence representation e. K2

,K3 are weight
matrices and L3 is a top weight matrix. To the right, an
instance of a one-dimensional convolution between some
weight matrix Ki and a generic matrix M that could for
instance correspond to Ee

2. The color coding of weights
indicates weight sharing.

The main component of the architecture of the CSM
is a sequence of weight matrices (Ki
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that cor-
respond to the kernels or filters of the convolution
and can be thought of as learnt feature detectors.
From the sentence matrix Ee the CSM computes a
continuous vector representation e 2 Rq⇥1 for the
sentence e by applying a sequence of convolutions
to Ee whose weights are given by the weight matri-
ces. The weight matrices and the sequence of con-
volutions are defined next.

We denote by (Ki

)2ir

a sequence of weight
matrices where each Ki 2 Rq⇥i is a matrix of i

columns and r = d
p
2Ne, where N is the length of

the longest source sentence in the training set. Each
row of Ki is a vector of i weights that is treated as
the kernel or filter of a one-dimensional convolution.
Given for instance a matrix M 2 Rq⇥j where the
number of columns j � i, each row of Ki can be
convolved with the corresponding row in M, result-
ing in a matrix Ki ⇤ M, where ⇤ indicates the con-
volution operation and (Ki ⇤M) 2 Rq⇥(j�i+1). For
i = 3, the value (Ki ⇤M):,a is computed by:

Ki

:,1�M:,a+Ki

:,2�M:,a+1+Ki

:,3�M:,a+2 (6)

where � is component-wise vector product. Ap-
plying the convolution kernel Ki yields a matrix
(Ki⇤M) that has i�1 columns less than the original
matrix M.

Given a source sentence of length k, the CSM
convolves successively with the sentence matrix Ee
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i:j the substring of words f
i

, ..., f

j

. Us-
ing the following identity,

P (f|e) =
mY

i=1

P (f

i

|f1:i�1, e) (1)

an RCTM estimates P (f|e) by directly computing
for each target position i the conditional probability
P (f

i

|f1:i�1, e) of the target word f

i

occurring in the
translation at position i, given the preceding target
words f1:i�1 and the source sentence e. We see that
an RCTM is sensitive not just to the source sentence
e but also to the preceding words f1:i�1 in the target
sentence; by doing so it incorporates a model of the
target language itself.

To model the conditional probability P (f|e), an
RCTM comprises both a generative architecture for
the target sentence and an architecture for condition-
ing the latter on the source sentence. To fully cap-
ture Eq. 1, we model the generative architecture with
a recurrent language model (RLM) based on a re-
current neural network (Mikolov et al., 2010). The
prediction of the i-th word f

i

in a RLM depends on
all the preceding words f1:i�1 in the target sentence
ensuring that conditional independence assumptions
are not introduced in Eq. 1. Although the predic-
tion is most strongly influenced by words closely
preceding f

i

, long-range dependencies from across
the whole sentence can also be exhibited. The con-
ditioning architectures are model specific and are
treated in Sect. 3-4. Both the generative and con-
ditioning aspects of the models deploy continuous
representations for the constituents and are trained
as a single joint architecture. Given the modelling
framework underlying RCTMs, we now proceed to
describe in detail the recurrent language model un-
derlying the generative aspect.

2.1 Recurrent Language Model
A RLM models the probability P (f) that the se-
quence of words f occurs in a given language. Let
f = f1, ..., fm be a sequence of m words, e.g. a sen-
tence in the target language. Analogously to Eq. 1,
using the identity,

P (f) =

mY

i=1

P (f

i

|f1:i�1) (2)

the model explicitly computes without simpli-
fying assumptions the conditional distributions

R

I O

fi P(f   )i+1

h

R

fi-1 P(f )i fi+1 P(f   )i+2

OI

h h hi-1 i i+1

Figure 1: A RLM (left) and its unravelling to depth 3
(right). The recurrent transformation is applied to the hid-
den layer hi�1 and the result is summed to the represen-
tation for the current word fi. After a non-linear transfor-
mation, a probability distribution over the next word fi+1

is predicted.

P (f

i

|f1:i�1). The architecture of a RLM comprises
a vocabulary V that contains the words f

i

of the
language as well as three transformations: an in-
put vocabulary transformation I 2 Rq⇥|V |, a re-
current transformation R 2 Rq⇥q and an output
vocabulary transformation O 2 R|V |⇥q. For each
word f

k

2 V , we indicate by i(f

k

) its index in V

and by v(f

k

) 2 R|V |⇥1 an all zero vector with only
v(f

k

)i(fk) = 1.
For a word f

i

, the result of I · v(f
i

) 2 Rq⇥1 is
the input continuous representation of f

i

. The pa-
rameter q governs the size of the word representa-
tion. The prediction proceeds by successively ap-
plying the recurrent transformation R to the word
representations and predicting the next word at each
step. In detail, the computation of each P (f

i

|f1:i�1)

proceeds recursively. For 1 < i < m,

h1 = �(I · v(f1)) (3a)
h

i+1 = �(R · h
i

+ I · v(f
i+1)) (3b)

o

i+1 = O · h
i

(3c)

and the conditional distribution is given by,

P (f

i

= v|f1:i�1) =
exp (o

i,v

)

P
V

v=1 exp(oi,v)
(4)

In Eq. 3, � is a nonlinear function such as tanh. Bias
values b

h

and b

o

are included in the computation. An
illustration of the RLM is given in Fig. 1.

The RLM is trained by backpropagation through
time (Mikolov et al., 2010). The error in the pre-
dicted distribution calculated at the output layer is
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Figure 3: A graphical depiction of the two RCTMs. Arrows represent full matrix transformations while lines are
vector transformations corresponding to columns of weight matrices.

represented by Ee
i

. For example, for a sufficiently
long sentence e, gram(Ee

2) = 2, gram(Ee
3) = 4,

gram(Ee
4) = 7. We denote by cgm(e, n) that matrix

Ee
i

from the CSM that represents the n-grams of the
source sentence e.

The CGM can also be inverted to obtain a repre-
sentation for a sentence from the representation of
its n-grams. We denote by icgm the inverse CGM,
which depends on the size of the n-gram represen-
tation cgm(e, n) and on the target sentence length
m. The transformation icgm unfolds the n-gram
representation onto a representation of a target sen-
tence with m words. The architecture corresponds
to an inverted CGM or, equivalently, to an inverted
truncated CSM (Fig. 3). Given the transformations
cgm and icgm, we now detail the computation of the
RCTM II.

4.2 RCTM II

The RCTM II models the conditional probability
P (f|e) by factoring it as follows:

P (f|e) = P (f|m, e) · P (m|e) (9a)

=

mY

i=1

P (f

i+1|f1:i,m, e) · P (m|e) (9b)

and computing the distributions P (f

i+1|f1:i,m, e)

and P (m|e). The architecture of the RCTM II
comprises all the elements of the RCTM I together
with the following additional elements: a translation
transformation Tq⇥q and two sequences of weight
matrices (Ji

)2is

and (Hi

)2is

that are part of
the icgm

3.
The computation of the RCTM II proceeds recur-

sively as follows:

Eg

= cgm(e, 4) (10a)
Fg

:,j = �(T ·Eg

:,j) (10b)

F = icgm(Fg

,m) (10c)
h1 = �(I · v(f1) + S · F:,1) (10d)

h

i+1 = �(R · h
i

+ I · v(f
i+1) + S · F:,i+1) (10e)

o

i+1 = O · h
i

(10f)

and the conditional distributions P (f

i+1|f1:i, e) are
obtained from o

i

as in Eq. 4. Note how each re-
constructed vector F:,i is added successively to the
corresponding layer h

i

that predicts the target word
f

i

. The RCTM II is illustrated in Fig. 3.

3Just like r the value s is small and depends on the length
of the source and target sentences in the training set. See
Sect. 5.1.2.

the sequence of weight matrices (Ki

)2ir

, one af-
ter the other starting with K2 as follows:

Ee
1 = Ee (7a)

Ee
i+1 = �(Ki+1 ⇤Ee

i

) (7b)

After a few convolution operations, Ee
i

is either a
vector in Rq⇥1, in which case we obtained the de-
sired representation, or the number of columns in
Ee

i

is smaller than the number i + 1 of columns in
the next weight matrix Ki+1. In the latter case, we
equally obtain a vector in Rq⇥1 by simply apply-
ing a top weight matrix Lj that has the same num-
ber of columns as Ee

i

. We thus obtain a sentence
representation e 2 Rq⇥1 for the source sentence e.
Note that the convolution operations in Eq. 7b are
interleaved with non-linear functions �. Note also
that, given the different levels at which the weight
matrices Ki and Li are applied, the top weight
matrix Lj comes from an additional sequence of
weight matrices (Li

)2ir

distinct from (Ki

)2ir

.
Fig. 2 depicts an instance of the CSM and of a one-
dimensional convolution.2

3.2 RCTM I
As defined in Sect. 2, the RCTM I models the condi-
tional probability P (f|e) of a sentence f = f1, ..., fm

in a target language F being the translation of a sen-
tence e = e1, ..., e

k

in a source language E. Accord-
ing to Eq. 1, the RCTM I explicitly computes the
conditional distributions P (f

i

|f1:i�1, e). The archi-
tecture of the RCTM I comprises a source vocabu-
lary V

E and a target vocabulary V

F, two sequences
of weight matrices (Ki

)2ir

and (Li

)2ir

that
are part of the constituent CSM, transformations
I 2 Rq⇥|V F|, R 2 Rq⇥q and O 2 R|V F|⇥q that are
part of the constituent RLM and a sentence transfor-
mation S 2 Rq⇥q. We write e = csm(e) for the
output of the CSM with e as the input sentence.

The computation of the RCTM I is a simple mod-
ification to the computation of the RLM described in
Eq. 3. It proceeds recursively as follows:

s = S · csm(e) (8a)
h1 = �(I · v(f1) + s) (8b)

h

i+1 = �(R · h
i

+ I · v(f
i+1) + s) (8c)

o

i+1 = O · h
i

(8d)
2For a formal treatment of the construction, see (Kalchbren-

ner and Blunsom, 2013).

and the conditional distributions P (f

i+1|f1:i, e) are
obtained from o

i

as in Eq. 4. � is a nonlinear func-
tion and bias values are included throughout the
computation. Fig. 3 illustrates an RCTM I.

Two aspects of the RCTM I are to be remarked.
First, the length of the target sentence is predicted
by the target RLM itself that by its architecture has
a bias towards shorter sentences. Secondly, the rep-
resentation of the source sentence e constraints uni-
formly all the target words, contrary to the fact that
the target words depend more strongly on certain
parts of the source sentence and less on other parts.
The next model proposes an alternative formulation
of these aspects.

4 Recurrent Continuous Translation
Model II

The central idea behind the RCTM II is to first es-
timate the length m of the target sentence indepen-
dently of the main architecture. Given m and the
source sentence e, the model constructs a represen-
tation for the n-grams in e, where n is set to 4. Note
that each level of the CSM yields n-gram represen-
tations of e for a specific value of n. The 4-gram
representation of e is thus constructed by truncat-
ing the CSM at the level that corresponds to n = 4.
The procedure is then inverted. From the 4-gram
representation of the source sentence e, the model
builds a representation of a sentence that has the
predicted length m of the target. This is similarly
accomplished by truncating the inverted CSM for a
sentence of length m.

We next describe in detail the Convolutional n-
gram Model (CGM). Then we return to specify the
RCTM II.

4.1 Convolutional n-gram model
The CGM is obtained by truncating the CSM at the
level where n-grams are represented for the chosen
value of n. A column g of a matrix Ee

i

obtained
according to Eq. 7 represents an n-gram from the
source sentence e. The value of n corresponds to
the number of word vectors from which the n-gram
representation g is constructed; equivalently, n is
the span of the weights in the CSM underneath g
(see Fig. 2-3). Note that any column in a matrix
Ee

i

represents an n-gram with the same span value
n. We denote by gram(Ee

i

) the size of the n-grams
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Figure 3: A graphical depiction of the two RCTMs. Arrows represent full matrix transformations while lines are
vector transformations corresponding to columns of weight matrices.

represented by Ee
i

. For example, for a sufficiently
long sentence e, gram(Ee

2) = 2, gram(Ee
3) = 4,

gram(Ee
4) = 7. We denote by cgm(e, n) that matrix

Ee
i

from the CSM that represents the n-grams of the
source sentence e.

The CGM can also be inverted to obtain a repre-
sentation for a sentence from the representation of
its n-grams. We denote by icgm the inverse CGM,
which depends on the size of the n-gram represen-
tation cgm(e, n) and on the target sentence length
m. The transformation icgm unfolds the n-gram
representation onto a representation of a target sen-
tence with m words. The architecture corresponds
to an inverted CGM or, equivalently, to an inverted
truncated CSM (Fig. 3). Given the transformations
cgm and icgm, we now detail the computation of the
RCTM II.

4.2 RCTM II

The RCTM II models the conditional probability
P (f|e) by factoring it as follows:

P (f|e) = P (f|m, e) · P (m|e) (9a)

=

mY

i=1

P (f

i+1|f1:i,m, e) · P (m|e) (9b)

and computing the distributions P (f

i+1|f1:i,m, e)

and P (m|e). The architecture of the RCTM II
comprises all the elements of the RCTM I together
with the following additional elements: a translation
transformation Tq⇥q and two sequences of weight
matrices (Ji

)2is

and (Hi

)2is

that are part of
the icgm

3.
The computation of the RCTM II proceeds recur-

sively as follows:

Eg

= cgm(e, 4) (10a)
Fg

:,j = �(T ·Eg

:,j) (10b)

F = icgm(Fg

,m) (10c)
h1 = �(I · v(f1) + S · F:,1) (10d)

h

i+1 = �(R · h
i

+ I · v(f
i+1) + S · F:,i+1) (10e)

o

i+1 = O · h
i

(10f)

and the conditional distributions P (f

i+1|f1:i, e) are
obtained from o

i

as in Eq. 4. Note how each re-
constructed vector F:,i is added successively to the
corresponding layer h

i

that predicts the target word
f

i

. The RCTM II is illustrated in Fig. 3.

3Just like r the value s is small and depends on the length
of the source and target sentences in the training set. See
Sect. 5.1.2.
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2) = 2, gram(Ee
3) = 4,

gram(Ee
4) = 7. We denote by cgm(e, n) that matrix

Ee
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from the CSM that represents the n-grams of the
source sentence e.

The CGM can also be inverted to obtain a repre-
sentation for a sentence from the representation of
its n-grams. We denote by icgm the inverse CGM,
which depends on the size of the n-gram represen-
tation cgm(e, n) and on the target sentence length
m. The transformation icgm unfolds the n-gram
representation onto a representation of a target sen-
tence with m words. The architecture corresponds
to an inverted CGM or, equivalently, to an inverted
truncated CSM (Fig. 3). Given the transformations
cgm and icgm, we now detail the computation of the
RCTM II.

4.2 RCTM II

The RCTM II models the conditional probability
P (f|e) by factoring it as follows:
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=
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and computing the distributions P (f
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and P (m|e). The architecture of the RCTM II
comprises all the elements of the RCTM I together
with the following additional elements: a translation
transformation Tq⇥q and two sequences of weight
matrices (Ji

)2is

and (Hi

)2is

that are part of
the icgm

3.
The computation of the RCTM II proceeds recur-

sively as follows:

Eg

= cgm(e, 4) (10a)
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:,j = �(T ·Eg
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and the conditional distributions P (f

i+1|f1:i, e) are
obtained from o
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as in Eq. 4. Note how each re-
constructed vector F:,i is added successively to the
corresponding layer h
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that predicts the target word
f
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. The RCTM II is illustrated in Fig. 3.

3Just like r the value s is small and depends on the length
of the source and target sentences in the training set. See
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WMT-NT 2009 2010 2011 2012

KN-5 218 213 222 225
RLM 178 169 178 181

IBM 1 207 200 188 197
FA-IBM 2 153 146 135 144

RCTM I 143 134 140 142
RCTM II 86 77 76 77

Table 1: Perplexity results on the WMT-NT sets.

are relatively small, we note that in principle our
models should scale similarly to RLMs which have
been applied to hundreds of millions of words.

5.2 Perplexity of gold translations

Since the computation of the probability of a trans-
lation under one of the RCTMs is efficient, we can
compute the perplexities of the RCTMs with respect
to the reference translations in the test sets. The per-
plexity measure is an indication of the quality that
a model assigns to a translation. We compare the
perplexities of the RCTMs with the perplexity of the
IBM Model 1 (Brown et al., 1993) and of the Fast-
Aligner (FA-IBM 2) model that is a state-of-the-art
variant of IBM Model 2 (Dyer et al., 2013). We add
as baselines the unconditional target RLM and a 5-
gram target language model with modified Kneser-
Nay smoothing (KN-5). The results are reported in
Tab. 1. The RCTM II obtains a perplexity that is
> 43% lower than that of the alignment based mod-
els and that is 40% lower than the perplexity of the
RCTM I. The low perplexity of the RCTMs suggests
that continuous representations and the transforma-
tions between them make up well for the lack of ex-
plicit alignments. Further, the difference in perplex-
ity between the RCTMs themselves demonstrates
the importance of the conditioning architecture and
suggests that the localised 4-gram conditioning in
the RCTM II is superior to the conditioning with the
whole source sentence of the RCTM I.

5.3 Sensitivity to source sentence structure

The second experiment aims at showing the sensi-
tivity of the RCTM II to the order and position of
words in the English source sentence. To this end,
we randomly permute in the training and testing sets

WMT-NT PERM 2009 2010 2011 2012

RCTM II 174 168 175 178

Table 2: Perplexity results of the RCTM II on the WMT-
NT sets where the words in the English source sentences
are randomly permuted.

the words in the English source sentence. The re-
sults on the permuted data are reported in Tab. 2. If
the RCTM II were roughly comparable to a bag-of-
words approach, there would be no difference under
the permutation of the words. By contrast, the dif-
ference of the results reported in Tab. 2 with those
reported in Tab. 1 is very significant, clearly indicat-
ing the sensitivity to word order and position of the
translation model.

5.3.1 Generating from the RCTM II
To show that the RCTM II is sensitive not only to

word order, but also to other syntactic and semantic
traits of the sentence, we generate and inspect can-
didate translations for various English source sen-
tences. The generation proceeds by sampling from
the probability distribution of the RCTM II itself and
does not depend on any other external resources.
Given an English source sentence e, we let m be
the length of the gold translation and we search the
distribution computed by the RCTM II over all sen-
tences of length m. The number of possible target
sentences of length m amounts to |V |m = 34831

m

where V = V

F is the French vocabulary; directly
considering all possible translations is intractable.
We proceed as follows: we sample with replace-
ment 2000 sentences from the distribution of the
RCTM II, each obtained by predicting one word at
a time. We start by predicting a distribution for the
first target word, restricting that distribution to the
top 5 most probable words and sampling the first
word of a candidate translation from the restricted
distribution of 5 words. We proceed similarly for
the remaining words. Each sampled sentence has a
well-defined probability assigned by the model and
can thus be ranked. Table 3 gives various English
source sentences and some candidate French trans-
lations generated by the RCTM II together with their
ranks.

The results in Tab. 3 show the remarkable syn-
tactic agreements of the candidate translations; the
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to the reference translations in the test sets. The per-
plexity measure is an indication of the quality that
a model assigns to a translation. We compare the
perplexities of the RCTMs with the perplexity of the
IBM Model 1 (Brown et al., 1993) and of the Fast-
Aligner (FA-IBM 2) model that is a state-of-the-art
variant of IBM Model 2 (Dyer et al., 2013). We add
as baselines the unconditional target RLM and a 5-
gram target language model with modified Kneser-
Nay smoothing (KN-5). The results are reported in
Tab. 1. The RCTM II obtains a perplexity that is
> 43% lower than that of the alignment based mod-
els and that is 40% lower than the perplexity of the
RCTM I. The low perplexity of the RCTMs suggests
that continuous representations and the transforma-
tions between them make up well for the lack of ex-
plicit alignments. Further, the difference in perplex-
ity between the RCTMs themselves demonstrates
the importance of the conditioning architecture and
suggests that the localised 4-gram conditioning in
the RCTM II is superior to the conditioning with the
whole source sentence of the RCTM I.

5.3 Sensitivity to source sentence structure

The second experiment aims at showing the sensi-
tivity of the RCTM II to the order and position of
words in the English source sentence. To this end,
we randomly permute in the training and testing sets
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Table 2: Perplexity results of the RCTM II on the WMT-
NT sets where the words in the English source sentences
are randomly permuted.

the words in the English source sentence. The re-
sults on the permuted data are reported in Tab. 2. If
the RCTM II were roughly comparable to a bag-of-
words approach, there would be no difference under
the permutation of the words. By contrast, the dif-
ference of the results reported in Tab. 2 with those
reported in Tab. 1 is very significant, clearly indicat-
ing the sensitivity to word order and position of the
translation model.

5.3.1 Generating from the RCTM II
To show that the RCTM II is sensitive not only to

word order, but also to other syntactic and semantic
traits of the sentence, we generate and inspect can-
didate translations for various English source sen-
tences. The generation proceeds by sampling from
the probability distribution of the RCTM II itself and
does not depend on any other external resources.
Given an English source sentence e, we let m be
the length of the gold translation and we search the
distribution computed by the RCTM II over all sen-
tences of length m. The number of possible target
sentences of length m amounts to |V |m = 34831

m

where V = V

F is the French vocabulary; directly
considering all possible translations is intractable.
We proceed as follows: we sample with replace-
ment 2000 sentences from the distribution of the
RCTM II, each obtained by predicting one word at
a time. We start by predicting a distribution for the
first target word, restricting that distribution to the
top 5 most probable words and sampling the first
word of a candidate translation from the restricted
distribution of 5 words. We proceed similarly for
the remaining words. Each sampled sentence has a
well-defined probability assigned by the model and
can thus be ranked. Table 3 gives various English
source sentences and some candidate French trans-
lations generated by the RCTM II together with their
ranks.

The results in Tab. 3 show the remarkable syn-
tactic agreements of the candidate translations; the
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English source sentence French gold translation RCTM II candidate translation Rank

the patient is sick . le patient est malade . le patient est insuffisante . 1
le patient est mort . 4
la patient est insuffisante . 23

the patient is dead . le patient est mort . le patient est mort . 1
le patient est dépassé . 4

the patient is ill . le patient est malade . le patient est mal . 3

the patients are sick . les patients sont malades . les patients sont confrontés . 2
les patients sont corrompus . 5

the patients are dead . les patients sont morts . les patients sont morts . 1
the patients are ill . les patients sont malades . les patients sont confrontés . 5

the patient was ill . le patient était malade . le patient était mal . 2

the patients are not dead . les patients ne sont pas morts . les patients ne sont pas morts . 1

the patients are not sick . les patients ne sont pas malades . les patients ne sont pas hunknowni . 1
les patients ne sont pas mal . 6

the patients were saved . les patients ont été sauvés . les patients ont été sauvées . 6

Table 3: English source sentences, respective translations in French and candidate translations generated from the
RCTM II and ranked out of 2000 samples according to their decreasing probability. Note that end of sentence dots (.)
are generated as part of the translation.

WMT-NT 2009 2010 2011 2012

RCTM I + WP 19.7 21.1 22.5 21.5
RCTM II + WP 19.8 21.1 22.5 21.7
cdec (12 features) 19.9 21.2 22.6 21.8

Table 4: Bleu scores on the WMT-NT sets of each RCTM
linearly interpolated with a word penalty WP. The cdec
system includes WP as well as five translation models and
two language modelling features, among others.

large majority of the candidate translations are fully
well-formed French sentences. Further, subtle syn-
tactic features such as the singular or plural ending
of nouns and the present and past tense of verbs are
well correlated between the English source and the
French candidate targets. Finally, the meaning of
the English source is well transferred on the French
candidate targets; where a correlation is unlikely or
the target word is not in the French vocabulary, a se-
mantically related word or synonym is selected by
the model. All of these traits suggest that the RCTM
II is able to capture a significant amount of both
syntactic and semantic information from the English
source sentence and successfully transfer it onto the
French translation.

5.4 Rescoring and BLEU Evaluation

The fourth experiment tests the ability of the RCTM
I and the RCTM II to choose the best translation
among a large number of candidate translations pro-
duced by another system. We use the cdec sys-
tem to generate a list of 1000 best candidate trans-
lations for each English sentence in the four WMT-
NT sets. We compare the rescoring performance of
the RCTM I and the RCTM II with that of the cdec
itself. cdec employs 12 engineered features includ-
ing, among others, 5 translation models, 2 language
model features and a word penalty feature (WP). For
the RCTMs we simply interpolate the log probabil-
ity assigned by the models to the candidate transla-
tions with the word penalty feature WP, tuned on the
validation data. The results of the experiment are
reported in Tab. 4.

While there is little variance in the resulting Bleu
scores, the performance of the RCTMs shows that
their probabilities correlate with translation qual-
ity. Combining a monolingual RLM feature with
the RCTMs does not improve the scores, while re-
ducing cdec to just one core translation probability
and language model features drops its score by two
to five tenths. These results indicate that the RCTMs
have been able to learn both translation and language
modelling distributions.
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English source sentence French gold translation RCTM II candidate translation Rank

the patient is sick . le patient est malade . le patient est insuffisante . 1
le patient est mort . 4
la patient est insuffisante . 23

the patient is dead . le patient est mort . le patient est mort . 1
le patient est dépassé . 4

the patient is ill . le patient est malade . le patient est mal . 3

the patients are sick . les patients sont malades . les patients sont confrontés . 2
les patients sont corrompus . 5

the patients are dead . les patients sont morts . les patients sont morts . 1
the patients are ill . les patients sont malades . les patients sont confrontés . 5

the patient was ill . le patient était malade . le patient était mal . 2

the patients are not dead . les patients ne sont pas morts . les patients ne sont pas morts . 1

the patients are not sick . les patients ne sont pas malades . les patients ne sont pas hunknowni . 1
les patients ne sont pas mal . 6

the patients were saved . les patients ont été sauvés . les patients ont été sauvées . 6

Table 3: English source sentences, respective translations in French and candidate translations generated from the
RCTM II and ranked out of 2000 samples according to their decreasing probability. Note that end of sentence dots (.)
are generated as part of the translation.

WMT-NT 2009 2010 2011 2012

RCTM I + WP 19.7 21.1 22.5 21.5
RCTM II + WP 19.8 21.1 22.5 21.7
cdec (12 features) 19.9 21.2 22.6 21.8

Table 4: Bleu scores on the WMT-NT sets of each RCTM
linearly interpolated with a word penalty WP. The cdec
system includes WP as well as five translation models and
two language modelling features, among others.

large majority of the candidate translations are fully
well-formed French sentences. Further, subtle syn-
tactic features such as the singular or plural ending
of nouns and the present and past tense of verbs are
well correlated between the English source and the
French candidate targets. Finally, the meaning of
the English source is well transferred on the French
candidate targets; where a correlation is unlikely or
the target word is not in the French vocabulary, a se-
mantically related word or synonym is selected by
the model. All of these traits suggest that the RCTM
II is able to capture a significant amount of both
syntactic and semantic information from the English
source sentence and successfully transfer it onto the
French translation.

5.4 Rescoring and BLEU Evaluation

The fourth experiment tests the ability of the RCTM
I and the RCTM II to choose the best translation
among a large number of candidate translations pro-
duced by another system. We use the cdec sys-
tem to generate a list of 1000 best candidate trans-
lations for each English sentence in the four WMT-
NT sets. We compare the rescoring performance of
the RCTM I and the RCTM II with that of the cdec
itself. cdec employs 12 engineered features includ-
ing, among others, 5 translation models, 2 language
model features and a word penalty feature (WP). For
the RCTMs we simply interpolate the log probabil-
ity assigned by the models to the candidate transla-
tions with the word penalty feature WP, tuned on the
validation data. The results of the experiment are
reported in Tab. 4.

While there is little variance in the resulting Bleu
scores, the performance of the RCTMs shows that
their probabilities correlate with translation qual-
ity. Combining a monolingual RLM feature with
the RCTMs does not improve the scores, while re-
ducing cdec to just one core translation probability
and language model features drops its score by two
to five tenths. These results indicate that the RCTMs
have been able to learn both translation and language
modelling distributions.
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