Neural Nets in Machine Translation

Alexander Fonarev newo@newo.su

March 24, 2014

History of neural nets and deep learning

- Invented 1960's
- Backpropagation 1974
- RBMs and DBMs 2000
- Autoencoders 2006
- Dropout 2012

Geoffrey Hinton

Whetting your appetite

- Win different competitions since 2009
- Hinton's team is bought by Google in 2013
- State of the art now
 - Image recognition
 - Speech recognition
 - Sentiment analysis
 - Paraphrase detection
 - etc

Feed forward neural net

Feed forward neural net

Language modeling

$$\hat{P}(w_1^T) = \prod_{t=1}^T \hat{P}(w_t | w_1^{t-1})$$

$$\hat{P}(w_t | w_1^{t-1}) \approx \hat{P}(w_t | w_{t-n+1}^{t-1})$$

Neural network language model

Recurrent neural net

Unfolded recurrent neural net

Recurrent neural network LM

$$h_{1} = \sigma(\mathbf{I} \cdot \mathbf{v}(\mathbf{f}_{1}))$$
$$h_{i+1} = \sigma(\mathbf{R} \cdot h_{i} + \mathbf{I} \cdot \mathbf{v}(\mathbf{f}_{i+1}))$$
$$o_{i+1} = \mathbf{O} \cdot h_{i}$$

Recurrent neural network LM

Model	WER static	WER dynamic
RT05 LM	24.5	-
RT09 LM - baseline	24.1	-
KN5 in-domain	25.7	-
RNN 500/10 in-domain	24.2	24.1
RNN 500/10 + RT09 LM	23.3	23.2
RNN 800/10 in-domain	24.3	23.8
RNN 800/10 + RT09 LM	23.4	23.1
RNN 1000/5 in-domain	24.2	23.7
RNN 1000/5 + RT09 LM	23.4	22.9
3xRNN + RT09 LM	23.3	22.8

Recurrent continuous translation model 1

$$P(\mathbf{f}|\mathbf{e}) = \prod_{i=1}^{m} P(\mathbf{f}_i|\mathbf{f}_{1:i-1}, \mathbf{e})$$
$$\mathbf{s} = \mathbf{S} \cdot \operatorname{csm}(\mathbf{e})$$
$$h_1 = \sigma(\mathbf{I} \cdot \mathbf{v}(\mathbf{f}_1) + \mathbf{s})$$
$$h_{i+1} = \sigma(\mathbf{R} \cdot h_i + \mathbf{I} \cdot \mathbf{v}(\mathbf{f}_{i+1}) + \mathbf{s})$$
$$o_{i+1} = \mathbf{O} \cdot h_i$$

Recurrent continuous translation model 2

$$P(\mathbf{f}|\mathbf{e}) = P(\mathbf{f}|m, \mathbf{e}) \cdot P(m|\mathbf{e})$$
$$= \prod_{i=1}^{m} P(\mathbf{f}_{i+1}|\mathbf{f}_{1:i}, m, \mathbf{e}) \cdot P(m|\mathbf{e})$$

$$\begin{aligned} \mathbf{E}^{g} &= \mathsf{cgm}(\mathbf{e}, 4) \\ \mathbf{F}^{g}_{:,j} &= \sigma(\mathbf{T} \cdot \mathbf{E}^{g}_{:,j}) \\ \mathbf{F} &= \mathsf{icgm}(\mathbf{F}^{g}, m) \\ h_{1} &= \sigma(\mathbf{I} \cdot \mathsf{v}(\mathsf{f}_{1}) + \mathbf{S} \cdot \mathbf{F}_{:,1}) \\ h_{i+1} &= \sigma(\mathbf{R} \cdot h_{i} + \mathbf{I} \cdot \mathsf{v}(\mathsf{f}_{i+1}) + \mathbf{S} \cdot \mathbf{F}_{:,i+1}) \\ o_{i+1} &= \mathbf{O} \cdot h_{i} \end{aligned}$$

Perplexity

WMT-NT	2009	2010	2011	2012
KN-5	218	213	222	225
RLM	178	169	178	181
IBM 1	207	200	188	197
FA-IBM 2	153	146	135	144
RCTM I	143	134	140	142
RCTM II	86	77	76	77

Perplexity on permuted data

WMT-NT PERM	2009	2010	2011	2012
RCTM II	174	168	175	178

How to translate?

Generate words from distribution \mathfrak{S}

WMT-NT	2009	2010	2011	2012
RCTM I + WP	19.7	21.1	22.5	21.5
RCTM II + WP	19.8	21.1	22.5	21.7
cdec (12 features)	19.9	21.2	22.6	21.8

Examples

English source sentence	French gold translation	RCTM II candidate translation	Rank
the patient is sick .	le patient est malade .	le patient est insuffisante . le patient est mort . la patient est insuffisante .	1 4 23
the patient is dead .	le patient est mort .	le patient est mort . le patient est dépassé .	1 4
the patient is ill .	le patient est malade .	le patient est mal.	3
the patients are sick .	les patients sont malades .	les patients sont confrontés . les patients sont corrompus .	2 5
the patients are dead .	les patients sont morts .	les patients sont morts .	1
the patients are ill .	les patients sont malades .	les patients sont confrontés .	5
the patient was ill .	le patient était malade .	le patient était mal .	2
the patients are not dead .	les patients ne sont pas morts .	les patients ne sont pas morts .	1
the patients are not sick .	les patients ne sont pas malades .	les patients ne sont pas $\langle unknown \rangle$. les patients ne sont pas mal .	1 6
the patients were saved.	les patients ont été sauvés .	les patients ont été sauvées .	6

References

- A guide to recurrent neural networks and backpropagation, 2001 [Mikael Boden]
- A Neural Probabilistic Language Model, 2003 [Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin]
- Recurrent neural network based language model, 2010 [Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan "Honza" Cernock, Sanjeev Khudanpur]
- Recurrent Continuous Translation Models, 2013 [Nal Kalchbrenner, Phil Blunsom]
- Compositional Semantics, Deep Learning, and Machine Translation, MTM 2013 [Phil Blunsom]
- Машинное обучение (курс лекций), К.В.Воронцов