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Proteins

Protein — a sequence of amino acids {Ala,Arg, . . . } =: 𝒜
Each amino acid consists of atoms
E.g. (Cysteine):

[𝑁,𝐶𝛼, 𝐶,𝐻,𝑂⏟  ⏞  
backbone part

, 𝐻𝛼, 𝐶𝛽, 𝐻𝛽1 , 𝐻𝛽2 , 𝑆𝛾 , 𝐻𝛾⏟  ⏞  
side-chain

]

Primary structure — linear sequence of amino acids
Tertiary structure — 3D structure of protein molecules
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Protein backbone
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Backbone with side-chains
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Rotamer prediction problem statement

Given
Protein backbone

Predict
Rotamers — discretized conformations of side-chains

In other words: predict folding of side-chains.

Quality criteria

RMSD-like metrics based on the side-chain geometry

The key

Protein folds according to physical laws, minimizing free energy 𝐹
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Mathematical formulation

𝑚 — sequence length,
𝑛𝑘 < ∞ — number of rotamers for 𝑘-th amino acid,
𝑟𝑘 ∈ {1, . . . , 𝑛𝑘} =: ℛ𝑘 — indices of rotamers, ℛ = ×𝑚

𝑘=1ℛ𝑘,
𝑈𝑘𝑙(𝑟𝑘, 𝑟𝑙) — symmetrical potentials of pairwise interactions,

Potential energy minimization:

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑈𝑘𝑙(𝑟𝑘, 𝑟𝑙) → min
(𝑟1,...,𝑟𝑚)∈ℛ

(1)

Drawbacks:
There are potentials of higher orders
Actually, it is not free, but potential energy minimization
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Problem statement for protein design

Given
Protein backbone

Find
Primary structure that folds to the target protein structure

Quality criteria

Depends on particular problem statement
computational time
similarity of primary structure and the native structure
consistency with predicted secondary structure:
𝐿(3𝐷

𝑓−→𝜀1𝐷 →𝛿 2𝐷, 3𝐷 →0 2𝐷) → min
𝑓

.
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Notation

𝑚 — number of residues,
𝑎𝑘 = 1, . . . , 20 — amino-acids,
𝑛 =

∑︀𝑚
𝑘=1 𝑛𝑘 — dimension of the search space,

𝐸𝑘𝑙(𝑎𝑘, 𝑎𝑙) — energy.

Protein design optimization problem:

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑘𝑙(𝑎𝑘, 𝑎𝑙) → min
(𝑎1,...,𝑎𝑚)∈𝒜𝑚

(2)
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Reduction to boolean Quadratic Programming

Problem 2 can be reduced to BQP

minimize
�⃗�∈{0,1}𝑛

�⃗�TQ�⃗�

subject to A�⃗� = 1⃗𝑚,
(3)

where
[Q]𝑖𝑗 = 𝐸𝑖𝑗(𝑎𝑖, 𝑎𝑗),

A =

⎡⎢⎢⎢⎣
1 · · · 1 0 · · · 0 · · · · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · · · · 0 · · · 0
...

. . .
...

...
. . .

... · · · · · ·
...

. . .
...

⏟  ⏞  
20

0 · · · 0 ⏟  ⏞  
20

0 · · · 0 · · · · · · ⏟  ⏞  
20

1 · · · 1

⎤⎥⎥⎥⎦ .
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Final optimization problems

Rotamer prediction 1

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑈𝑘𝑙(𝑟𝑘, 𝑟𝑙) → min
(𝑟1,...,𝑟𝑚)∈ℛ

Protein design 2

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑘𝑙(𝑎𝑘, 𝑎𝑙) → min
(𝑎1,...,𝑎𝑚)∈𝒜𝑚

But we do not know actual potentials 𝑈𝑘𝑙 and 𝐸𝑘𝑙!
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Another look

1 (𝑟1, . . . , 𝑟𝑚) and (𝑎1, . . . , 𝑎𝑚) can be treated as proteins

𝑃 ∈ 𝒫

2 energy potentials can be treated as protein scoring functions

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝑈𝑘𝑙(𝑟𝑘, 𝑟𝑙) =: 𝑆1(𝑟1, . . . , 𝑟𝑚)

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑘𝑙(𝑎𝑘, 𝑎𝑙) =: 𝑆2(𝑎1, . . . , 𝑎𝑚)
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Introduced notation

Rotamer prediction 1

𝑆1(𝑟1, . . . , 𝑟𝑚) → min
(𝑟1,...,𝑟𝑚)∈ℛ

Protein design 2

𝑆2(𝑎1, . . . , 𝑎𝑚) → min
(𝑎1,...,𝑎𝑚)∈𝒜𝑚

So, the problem is to score proteins 𝑃 ∈ 𝒫.
Here we can apply machine learning!
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Protein scoring

For each native structure 𝑃0 a set of decoy structures 𝒟 is given:

𝒟 = {𝑃1, . . . , 𝑃𝑚} ⊂ 𝒫

Find
Scoring

(𝑖1, . . . , 𝑖𝑚) : 𝑃𝑖𝑚 ⪯ · · · ⪯ 𝑃𝑖1 ≺ 𝑃0.

The problem is to train protein scoring function

𝑆 : 𝒫 → R.

Then
𝑆(𝑃0) < 𝑆(𝑃𝑖1) 6 . . . 6 𝑆(𝑃𝑖𝑚).
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Performance estimation

First, we have to define the actual score function 𝑆*(𝑃 ).
1 RMSD

𝑆*(𝑃𝑖) = RMSD(𝑃𝑖, 𝑃0)

2 TM-score (Template modelling score)

max

[︃
1

𝐿target

∑︀𝐿aligned
𝑖

1

1+
(︁

𝑑𝑖
𝑑0(𝐿target)

)︁2

]︃
3 GDT-TS (Global distance test, total score)
4 GDT-HA (Global distance test, high accuracy)

Then we estimate:
Loss, Z-score
Pearson/Spearman correlation
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Two approaches

1 Single-model QA
Computationally efficient
Have far from perfect quality

2 Consensus-model QA

𝑆(𝑃𝑖) =
1

|𝒫|
∑︁
𝑃∈𝒫

𝜌(𝑃, 𝑃𝑖)

More precise
Hard to compute
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Methods

1 Machine learning
Features extraction
Allows using 2D information
Robust to errors in side-chain positions

2 Statistical potentials
𝒜 — atoms
AT = {at1, . . . , at𝑚} — atom types
at : 𝒜 → AT

𝑆(at(𝑎𝑖), at(𝑎𝑗), 𝑟𝑖𝑗) ∝ −𝑘𝑇 log 𝑝(at(𝑎𝑖), at(𝑎𝑗), 𝑟𝑖𝑗)

𝑆(𝑃 ) =
∑︁
𝑎𝑖 ̸=𝑎𝑗

𝑆(at(𝑎𝑖), at(𝑎𝑗), 𝑟𝑖𝑗)
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Single-model QA

1 Coarse-grained model
Uses only backbone conformation

Applied first to predict backbone conformation
Computationally efficient
Robust to errors in side-chain positions

2 All-atoms model
Uses all protein’s atoms

Applied on the stage of refinement
Usually more precise
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1 Reduced representation terms
Predicted secondary structure penalty
Solvent accessibility
Predicted contact map
Sheet formation
Backbone repulsion
Centroid repulsion
Residue environment potential
Context independent pair-wise potential
Context dependent pair-wise potential
Compactness

2 All-atom terms
Side-chain hydrogen bonding
Van der Walls forces
Solvation effects
Electrostatic interactions
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Geometrical Features

𝜃1 = 𝐶1
𝛽𝐶

1
𝛼𝐶

2
𝛼

Ω = 𝐶1
𝛽𝐶

1
𝛼𝐶

2
𝛼𝐶

2
𝛽

𝛼2 = 𝐶2⊥
𝛽 𝐶2

𝛼𝐶
2
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Geometrical Features

Featurization:

{𝑃0, 𝑃1, . . . , 𝑃𝑚} ↦→ {�⃗�0, �⃗�1, . . . , �⃗�𝑚}

Learning:
1 Classification

𝑦0 := −1; 𝑦𝑖 := 1, 1 6 𝑖 6 𝑚.

2 Regression
𝑦𝑖 := 𝑆*(𝑃𝑖), 0 6 𝑖 6 𝑚

3 Learning to Rank

𝑃𝑖𝑚 ⪯ · · · ⪯ 𝑃𝑖1 ≺ 𝑃0
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Results

Таблица: Top 1, Top 5, Spearman correlation

Logistic Regression Ridge Regression
Tasser 0.75 / 0.82 / 0.61 0.16 / 0.41 / 0.72
Tasser Original 0.84 / 0.91 / 0.10 0.73 / 0.79 / 0.22
Rosetta 0.93 / 0.97 / 0.62 0.14 / 0.48 / 0.73
Rosetta Original 0.00 / 0.05 / 0.03 0.14 / 0.31 / 0.17
Modeller 0.80 / 0.85 / 0.69 0.25 / 0.40 / 0.78
Modeller Original 0.90 / 0.90 / 0.49 0.55 / 0.65 / 0.74
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