Аддитивная регуляризация наивного линейного байесовского классификатора.

Шишковец Светлана Сергеевна

Московский физико-технический институт Факультет управления и прикладной математики Научный руководитель: д.ф.-м.н. К. В. Воронцов

Группа 274, 2016

Цель исследования

Наивный байсовский классификатор (NB):

- ⊖ предположение о независимости признаков
- \oplus время обучения $O(n\ell)$ для n признаков, ℓ объектов
- ⊕ высокое качество классификации текстов
- 🕀 обладает линейной моделью классификации

Цель работы — обобщить NB:

- ослабить ограничение независимости путём регуляризации
- сохранить высокую скорость обучения
- сохранить линейность классификатора
- ввести отбор признаков

Задача классификации

Дано:

$$X_i(x_1,...,x_j)$$
 — объекты $y_i \in \mathbb{Y} = \{c_0,c_1,...,c_m\}$ — классы.

Найти:

Линейный наивный байесовский классификатор:

$$a(X) = \sum_{j=1}^{n} w_j x_j$$

Критерий: максимум регуляризованного правдоподобия

$$\sum_{i=1}^{l} \sum_{j=1}^{n} p(X_i(x_j)|\theta_j) + \frac{R(\theta)}{\theta} \to \max_{\theta},$$

где $heta_j$ - параметр вероятностной модели, R(heta)- регуляризатор

Экспоненциальное семейство плотностей

Рассмотрим экспоненциальне семейство плотностей

$$p(x|\theta) = \exp\left(\frac{x\theta - c(\theta)}{\varphi} + h(x,\varphi)\right),$$

где $c(\theta)$, $h(x,\varphi)$ — функциональные параметры распределения, θ — cдвиг, φ — pазброс.

Теорема

Пусть одномерные плотности $p(x^j|\theta_y^j)$ принадлежат экспоненциальному семейству. Если $\Theta=(\theta_y^j)$ является точкой максимума правдоподобия, то

$$\theta_y^j = [c']^{-1} \left(\frac{1}{|X_y|} \sum_{x_i \in X_y} x_i \right).$$

Линейный наивный байесовский классификатор

Теорема

Пусть $\mathbb{Y}=\{-1,+1\}$, плотности $p(\mathbf{x}^j|\theta_y^j)$ принадлежат экспоненциальному семейству плотностей и параметры разброса не зависят от класса, $\varphi_y^j=\varphi^j$. Тогда NB представляется в линейном виде

$$a(x) = sign\left(\sum_{j=1}^{n} x^{j} w_{j} - w_{0}\right),\,$$

причём

$$w_j = \frac{1}{\varphi^j} \sum_{y \in \mathbb{Y}} y \theta^j_y, \qquad j = 1, \dots, n.$$

Аддитивная регуляризация

Дополнительные критерии качества $\mathcal{R}_q(w) o \max$. Взвешенная сумма с коэффициентами регуляризации au_q :

$$\mathcal{R}(w) = \sum_{k=1}^{K} \tau_k \mathcal{R}_k(w) \to \max_{w}.$$

Задача максимизации регуляризованного правдоподобия :

$$\sum_{j=1}^{n} \sum_{y \in \mathbb{Y}} \sum_{x_{j} \in X_{y}} \left(\frac{x_{j}^{j} \theta_{y}^{j} - c(\theta_{y}^{j})}{\varphi_{y}^{j}} \right) + \mathcal{R}(w(\Theta)) \rightarrow \max_{\Theta},$$

Регуляризованный линейный наивный байесовский классификатор

Теорема

Пусть $\mathbb{Y}=\{-1,+1\}$, плотности $p(x^j|\theta_y^j)$ принадлежат экспоненциальному семейству плотностей и параметры разброса не зависят от класса, $\varphi_y^j=\varphi^j$. Тогда точка максимума регуляризованного правдоподобия удовлетворяет системе уравнений

$$w_j = \frac{1}{\varphi^j} \sum_{y \in \mathbb{Y}} y[c']^{-1} \left(\frac{1}{|X_y|} \sum_{x_i \in X_y} x_i + \frac{y}{|X_y|} \frac{\partial \mathcal{R}}{\partial w_j} \right).$$

Регулярзаторы для отбора признаков

• Сжимающий регуляризатор по L_1 -норме:

$$\mathcal{R}(w) = -\tau \sum_{j=1}^{n} |w_j|.$$

• Сжимающий регуляризатор по *L*₀-норме:

$$\mathcal{R}(w) = -\tau \sum_{j=1}^{n} [w_j > 0]$$

 $||w||_0 = \#\{j=1...|Y||w^j \neq 0\}$ -количество ненулевых весов для каждого класса.

Идея: удалять признаки с малым весом.

Многоклассовая классификация

Подход **«One-vs-All»** с «выделенным» классом $c_0 \in \mathbb{Y}$. В задаче медецинской дифференциальной диагностики c_0 — абсолютно здоровые.

Регуляризатор

Идея: как можно сильнее дистанцировать векторы весов различных классов $y,z\in\mathbb{Y}$ друг от друга.

$$R = -\sum_{j=1}^{n} \sum_{y>z} |w_{yj}| |w_{zj}| \longrightarrow \max,$$

где w_{yj} - вес j-го признака для класса $y \in \mathbb{Y}$.

Прикладная задача

Дифференциальная диагностика заболеваний по ЭКГ методом В.М.Успенского.

Данные

ЭКГ, преобразованная в символьную последовательность и разбитая на триграммы (слова из трех букв). Признаки – частоты триграмм.

Всего 216 признаков, 18 болезней и класс абсолютно здоровых.

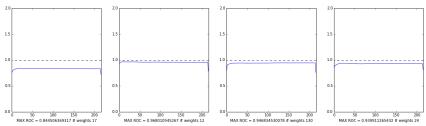
Цель

Повысить качество дифференциальной диагностики при помощи регуляризации линейного наивного байсовского классификатора.

В качестве критерия качества рассматривается площадь под ROC-кривой AUC(Area Under Curve).

Отбор признаков

Зависимость значения AUC от количества используемых в классификаторе признаков для болезней: ВСД, НГБК, ГБ и ХГ1.



Как правило, в случае распределения Пуассона 10 – 20 информативных признаков достаточно. Однако, в случае нормального распределения необходимо рпссматривать 70 – 100 признаков.

Методы классификации

Выполним эксперемент для **нормального(Norm)** и **пуассоновского(Pois)** распределения. Для каждого исследуем отдельно ругуляризаторы отбора признаков (L_0 , L_1) и их комбинацию с многоклассовым регуляризатором.

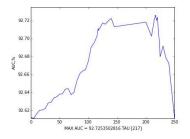
Результаты для распределения Пуассона

Болезнь	Pois	L_0	L_1	L_0+MR	L_1+MR
ВСД	0.8385	0.8252 (14)	0.8401	0.8245	0.8385
НГБК	0.9561	0.9510 (4)	0.9579	0.9516	0.9593
ГБ	0.9477	0.9466 (10)	0.9479	0.9466	0.958
ХГ1	0.9277	0.9202 (13)	0.9298	0.9178	0.9295
ДЖВП	0.9212	0.9189 (9)	0.9215	0.9182	0.9259
ЖКБ	0.9681	0.9662 (16)	0.9704	0.9670	0.9798
ИБС	0.9637	0.9613 (17)	0.9636	0.9615	0.9699
МКБ	0.9303	0.9272 (17)	0.9308	0.9274	0.9386
MM	0.9124	0.9099 (12)	0.9130	0.9099	0.9193
BCE	0.9268	0.9223 (11)	0.9280	0.9226	0.9291

Результаты для нормального распределения

Болезнь	Norm	L_0	L_1	L_0+MR	L_1+MR
ВСД	0.8435	0.8095 (91)	0.8448	0.8098	0.8478
НГБК	0.9588	0.9328 (49)	0.9594	0.9332	0.9631
ГБ	0.9395	0.9065 (117)	0.9397	0.9064	0.9421
ХГ1	0.9380	0.9138 (38)	0.9387	0.9146	0.9412
ДЖВП	0.9206	0.8895 (105)	0.9214	0.8896	0.9201
ЖКБ	0.9708	0.9590 (47)	0.9716	0.9586	0.9791
ИБС	0.9591	0.9397 (105)	0.9592	0.9393	0.9620
МКБ	0.9106	0.9010 (111)	0.9278	0.9010	0.9271
MM	0.9428	0.8859 (99)	0.9112	0.8861	0.9106
BCE	0.9268	0.9027 (88)	0.9273	0.9028	0.9293

Подбор коэффициентов регуляризации



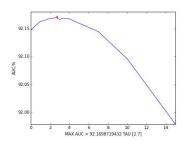


Рис.: Зависимость значения AUC от константы τ для L_1 -регуляризатора(слева) и многоклассового регуляризатора(справа).

Выводы

По результатам проведенного эксперимента можно сделать следующие выводы:

- NВ дает хорошие рузультаты как для нормального, так и для пуассоновского распределения
- обе регуляризации хорошо справляются с отбором признаков
- примененные типы регуляризаторов улучшают качество работы классификатора

Результаты, выносимые на защиту

- Предложен метод аддитивной регуляризации наивного байесовского классификатора
- Предложены регуляризаторы для отбора признаков и для повышения различности векторов весов признаков в многоклассовой классификации.
- Показано, что разработанные методы повышают качество дифференциальной диагностики заболеваний при использовании технологии информационного анализа электрокардиосигналов.