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De�nition of SVD

SVD decomosition12

Every matrix X ∈ RNxD , rankX = R , can be decomposed into the
product of three matrices:

X = UΣV T

where

U ∈ RNxR , Σ ∈ RRxR , V T ∈ RRxD

Σ = diag{σ1, σ2, ...σR}, σ1 ≥ σ2 ≥ ... ≥ σR ≥ 0,

UTU = I , V TV = I , where I ∈ RRxR is identity matrix.

1Prove it
2Is it unique?
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De�nition of SVD

Interpretation of SVD

For Xij let i denote objects and j denote properties.

Columns of U - orthonormal basis of columns of X

Rows of V T - orthonormal basis of rows of X

Σ - scaling.

E�cient representations of low-rank matrix!
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De�nition of SVD

Interpretation of SVD

For Xij let i denote objects and j denote properties.

Rows of U are normalized coordinates of rows in V T

Σ = diag{σ1, ...σR} shows the magnitudes of presence of each
row from V T .
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De�nition of SVD

Finding U and V

Finding U:

XXT = UΣV T
(
UΣV T

)T
= UΣV TVΣUT = UΣ2UT . So

XXTU = UΣ2UTU = UΣ2.

So U consists of eigenvectors of XXTwith corresponding
eigenvalues σ2

1
, σ2

2
, ...σ2R .

Finding V

XTX =
(
UΣV T

)T
UΣV T = (VΣUT )UΣV T = VΣ2V T . It

follows that
XTXV = VΣ2V TV = VΣ2

So V consists of eigenvectors of XTX with corresponding
eigenvalues σ2

1
, σ2

2
, ...σ2R - these are top R principal

components!
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De�nition of SVD

SVD: existence

Theorem 1

For any matrix X ∈ RNxD SVD decomposition exists.

Proof. Consider arbitrary X = [xT
1
, ...xTN ]T ∈ RNxD with rgX = R .

For rows xT
1
, ...xTN �nd principal components v1, ...vR .

De�ne V T = [vT
1
, ...vTR ] ∈ RRxD . By de�nition of principal

coomponents V TV = I . Consider B with rows=coordinates of
x1, ...xN in principal components, then X = BV T .
Let b1, ..bD be columns of B , satisfying bi = Xvi . Then
bTi bj = vTi XTXvj = λjv

T
i vj = λjI[i = j ], because vj is an

eigenvector of XTX with eigenvalue λj . Also λj ≥ 0 because
XTX � 0. So b1, ...bD are orthogonal.
If we consider Σ = diag{

√
λ1, ...

√
λD} B = UΣ we will obtain that

UTU = I . So SVD decomposion X = UΣV T exists.
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De�nition of SVD

SVD: uniqueness

Theorem

SVD decomposition is unique if XTX ∈ RDxD has a set of D
unique eigenvalues.

Unique set of eigenvalues mean that eigenvectors are uniquely
de�ned (up to multiplicative constant).

If two eigenvalues are equal respective eigenvectors are not
uniquely de�ned.

Sometimes condition σ1 ≥ σ2 ≥ ... ≥ σR ≥ 0 is not required.

Then we can freely change ordering simultaneously of u1, ...uR ;
σ1, ...σR ; v1, ...vR .
So SVD is not unique
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Reduced (truncated) SVD

Reduced SVD decomposition

Σ = diag{σ1, σ2, ...σK , σK+1, ...σR} −→
diag{σ1, σ2, ...σK , 0, 0, ..0} = ΣK
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Reduced (truncated) SVD

Reduced SVD decomposition

Simpli�cation to rank K ≤ R :

XK = UKΣKVK

Σ = diag{σ1, σ2, ...σK , σK+1, ...σR} −→ diag{σ1, σ2, ...σK} = ΣK

U = [u1, u2, ...uK , uK+1, ...uR ] −→ [u1, u2, ...uK ] = UK

V = [v1, v2, ...vK , vK+1, ...vR ] −→ [v1, v2, ...vK ] = VK

Now rows of U give reduced representation of rows of X .
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Reduced (truncated) SVD

Properties of reduced SVD decomposition

Frobenius norm of matrix

‖X‖2F =
N∑

n=1

D∑
d=1

x2nd

For matrix X and its approximation X̂ we can measure

approximation error =
∥∥∥X̂ − X

∥∥∥2
F

Theorem 2

Suppose X ∈ RNxD , is approximated with X̂K = UKΣKVK . Then:

1 rankXK = K .

2 XK = argminB:rankB≤K ‖X − B‖2F
12/27



Singular value decomposition - Victor Kitov

Reduced (truncated) SVD

Proof of theorem 2

1 rgUK = rgUKΣK = K , rgVK = K , so
rg X̂K = rg [UKΣKVK ] = K

2 Let X = [x1, ...xN ]T , B = [b1, ...bN ]T , D = UΣ,

DK = UKΣK , so X = DV , X̂K = DKVK
1 consider subspace L spanned by b1, ...bN . Since

rgB ≤ K ,dim(L) ≤ K .

2 ‖X − B‖2F =
∑N

n=1
‖xn − bn‖2 ≤

∑N
n=1

∥∥∥xn − b̃n

∥∥∥2, where b̃n

is projection of xn on L.
3 Since rows of VK are top K principal components, rows of DK

are coordinates in �rst K principal components, and

X̂K = [p1, ...pN ]T consists of projections onto K best �t

subspace.

4

∥∥∥X − X̂K

∥∥∥2
F

=
∥∥[x1 − p1, ...xN − pN ]T

∥∥2
F

=∑N
n=1
‖xn − pn‖2 ≤

∑N
n=1

∥∥∥xn − b̃n

∥∥∥2 ≤∑N
n=1
‖xn − bn‖2 =

‖X − B‖2F 13/27
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Reduced (truncated) SVD

Which K to choose for approximation?

Suppose X = UΣV T , Σ = diag{σ1, ...σR}
Approximation X̂K = UΣKV

T , Σ = diag{σ1, ...σK , 0, 0, ...0}.
Then error of approximation EK = X − X̂K = UΣ̃V T , where
Σ̃ = diag{0, 0, ...0, σK+1, ...σR}
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Reduced (truncated) SVD

Which K to choose for approximation?

Select K giving relative error below some threshold t:

K = argmin
K

{
‖EK‖2F
‖X‖2F

=

∑R
i=K+1

σ2i∑R
i=1

σ2i
< t

}
We used theorem 3 for calculation of Frobenius matrix norm.
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Reduced (truncated) SVD

Frobenius norm

Theorem 3

for any matrix X and its singular value decomposition A = UΣV T ,

Σ = diag{σ1, ...σR}:

‖X‖2F =
R∑
i=1

σ2i

Proof. Using lemmas 1 and 2, we obtain:

‖X‖2F = tr[UΣV TVΣUT ] = tr[U(Σ2UT )] =

= tr[(Σ2UT )U] = tr[Σ2] =
R∑

r=1

σ2r
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Reduced (truncated) SVD

Lemmas

Lemma 1

For any X ∈ RNxD ||X ||2F = trXXT

Proof.
{
XXT

}
i ,j

=
∑D

k=1
xikx

t
kj =

∑D
k=1

xikxjk . So

trXXT =
N∑
i=1

{XXT}i ,i =
N∑
i=1

D∑
k=1

xikxik = ‖X‖2F
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Reduced (truncated) SVD

Lemmas

Lemma 2

For any A ∈ RNxD and B ∈ RDxN

trAB = trBA

Proof. {AB}n,n =
∑D

d=1
an,dbd ,n, so

trAB =
N∑

n=1

{AB}n,n =
N∑

n=1

D∑
d=1

an,dbd ,n

{BA}d ,d =
∑N

n=1
bd ,nan,d , so

trBA =
D∑

d=1

{BA}d ,d =
D∑

d=1

N∑
n=1

bd ,nan,d =

=
N∑

n=1

D∑
d=1

an,dbd ,n = trAB
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Applications of SVD

Table of Contents

1 De�nition of SVD

2 Reduced (truncated) SVD

3 Applications of SVD

4 Recommendation system with SVD

19/27



Singular value decomposition - Victor Kitov

Applications of SVD

Dimensionality reduction

rows of U give reduced representation of rows of X .

xn ∈ RD −→ un ∈ RK
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Applications of SVD

Memory e�ciency

Storage costs of X ∈ RNxD , assuming N ≥ D and each element
taking 1 byte:

Memory storage costs

representation of X memory requirements

original X ?

fully SVD decomposed ?

reduced SVD to rank K ?
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Applications of SVD

Performance e�ciency

Multiplication Xq

X - normalized documents representation

q - normalized search query

representation of X Xq complexity

original X ?

reduced SVD to rank K ?
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Recommendation system with SVD
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Recommendation system with SVD

Example

T
e
rm

in
a
to
r

G
la
d
ia
to
r

R
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L
o
v
e
st
o
ry

A
w
a
lk

to
re
m
e
m
b
e
r

Andrew 4 5 5 0 0 0

John 4 4 5 0 0 0

Matthew 5 5 4 0 0 0

Anna 0 0 0 5 5 5

Maria 0 0 0 5 5 4

Jessika 0 0 0 4 5 4
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Recommendation system with SVD

Example

U =



0. 0.6 −0.3 0. 0. −0.8
0. 0.5 −0.5 0. 0. 0.6
0. 0.6 0.8 0. 0. 0.2
0.6 0. 0. −0.8 −0.2 0.
0.6 0. 0. 0.2 0.8 0.
0.5 0. 0. 0.6 −0.6 0.


Σ = diag{

(
14. 13.7 1.2 0.6 0.6 0.5

)
}

V T =



0. 0. 0. 0.6 0.6 0.5
0.5 0.6 0.6 0. 0. 0.
0.5 0.3 −0.8 0. 0. 0.
0. 0. 0. −0.2 0.8 −0.6
−0. −0. −0. 0.8 −0.2 −0.6
0.6 −0.8 0.2 0. 0. 0.


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Recommendation system with SVD

Example (excluded insigni�cant concepts)

U2 =



0. 0.6
0. 0.5
0. 0.6
0.6 0.
0.6 0.
0.5 0.


Σ2 = diag{

(
14. 13.7

)
}

V T
2 =

(
0. 0. 0. 0.6 0.6 0.5
0.5 0.6 0.6 0. 0. 0.

)
Concepts may be

patterns among movies (along j) - action movie / romantic movie
patterns among people (along i) - boys / girls

Dimensionality reduction case: patterns along j axis.

26/27



Singular value decomposition - Victor Kitov

Recommendation system with SVD

Applications

Example: new movie rating by new person

x =
(
5 0 0 0 0 0

)
Dimensionality reduction: map x into concept space:

y = V T
2 x =

(
0 2.7

)
Recommendation system: map y back to original movies
space:

x̂ = yV T
2 =

(
1.5 1.6 1.6 0 0 0

)
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