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SVD decomosition!?

Every matrix X € RNXD | rank X = R, can be decomposed into the
product of three matrices:
X=Uzv’T
where
o Uc RNXR’ D= RRXR’ vT e RFRxD
e ¥ = diag{o1,02,..0r}, 01 > 02> .. > 0r >0,
o UTU=1,VTV =1, where | € R*R is identity matrix.

Prove it
2|5 it unique?
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Interpretation of SVD

- D ——» -— R —»

- R —» - D) —

For Xj; let i denote objects and j denote properties.
@ Columns of U - orthonormal basis of columns of X
@ Rows of V' T- orthonormal basis of rows of X
@ Y - scaling.
o Efficient representations of low-rank matrix!
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Interpretation of SVD

- D ——» -— R —»

- R —» - D) ——

- 3

For Xj; let i denote objects and j denote properties.
@ Rows of U are normalized coordinates of rows in VT

e ¥ = diag{o1,...0r} shows the magnitudes of presence of each
row from VT,

5/27



Singular value decomposition - Victor Kitov
Definition of SVD

Finding U and V

e Finding U:
XXT = UsvT (UsvT)T = UsvTvsUT = Us2U7. So
XXTU=Us?UTU = Uz

So U consists of eigenvectors of XX Twith corresponding

eigenvalues 0%, 03, ...0%.
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Finding U and V

e Finding U:
XXT = UsvT (UsvT)T = UsvTvsUT = Us2U7. So
XXTU=Uz?UTU = Uz
So U consists of eigenvectors of XX Twith corresponding
eigenvalues 0%, 03, ...0%.
e Finding V
XTX = (UZVT) ULVv’T = (vZUuTuzv’ = v2vT It
follows that
XTXV =vE2vTy = vi?
So V consists of eigenvectors of X X with corresponding
eigenvalues 0%, 03, ...0% - these are top R principal
components!
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SVD: existence

For any matrix X € RV*P SVD decomposition exists. \

Proof. Consider arbitrary X =[x, ..xJ]T € RV with rg X = R.
For rows x; , x,;’,— find principal components vy, ...vg.

Define VT = [v{,...v2] € R®*P_ By definition of principal
coomponents VTV = /. Consider B with rows=coordinates of
X1,...Xy in principal components, then X = BV T,

Let by, ..bp be columns of B, satisfying b; = Xv;. Then

bl b; = v XTXv; = \jv." v; = \[I[i = j], because v; is an
eigenvector of X T X with eigenvalue \;. Also \; > 0 because
XTX = 0. So by, ...bp are orthogonal.

If we consider ¥ = diag{+/A1,...v/Ap} B = UZ we will obtain that
UTU = 1. So SVD decomposion X = ULV exists. O

7/27



Singular value decomposition - Victor Kitov
Definition of SVD

SVD: uniqueness

SVD decomposition is unique if XX € RPP has a set of D
unique eigenvalues.

@ Unique set of eigenvalues mean that eigenvectors are uniquely
defined (up to multiplicative constant).

e If two eigenvalues are equal respective eigenvectors are not
uniquely defined.

@ Sometimes condition o1 > 02 > ... > og > 0 is not required.

e Then we can freely change ordering simultaneously of vy, ...ug;
01,y...0R; V1,...VR.
e So SVD is not unique
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Reduced SVD decomposition

~— D—>  ~—R—»>

~-— R —» - D —»

Y = diag{al,ag, - OK,OK+1, ...O’R} —
diag{o1,02,...0x,0,0,..0} = Xk
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Reduced SVD decomposition

- D ——» - K-

- > -— D —>

Zk

~

Simplification to rank K < R:

Xk = UkXk Vi

- X -

Y = diag{al,ag, - OK,OK+1, ...O’R} — diag{o'l,oz, ...O’K} = ZK
U= [Ul, up, ..Uk, UK41, ...UR] — [u1, U2,...UK] = Uk

V = [V], V2, ...VK, VK_|_1,...VR] — [V1, V2,...VK] = VK

@ Now rows of U give reduced representation of rows of X.
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Properties of reduced SVD decomposition

Frobenius norm of matrix

N D
IXIE =D Xk

n=1 d=1

@ For matrix X and its approximation X we can measure

~ 2
approximation error = HX - XH
F

Suppose X € RM*P s approximated with )?K = UkXkVk. Then:
O rank Xk = K.
(2] XK = argminB:rankBSK ||X - BH%
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Proof of theorem 2

(1] rggK:rgUKZK: K, rg Vx = K, so
rgXK =rg [UKZK VK] =K
Q Let X = [Xl, ...XN]T, B = [bl, ...b[\/]T7 D = UL,
DK = UKZK, so X = DV, XK = DK VK
©® consider subspace L spanned by by, ...by. Since
rg B < K,dim(L) < K.
2
0 I1X = BIF = Sy Ixn — ball” < X0y |
is projection of x, on L.
© Since rows of Vi are top K principal components, rows of Dy
are coordinates in first K principal components, and
Xy = [p1,..-pn] T consists of projections onto K best fit
subspace.

—~ 12
o HX - XKHF = ||l = pryeow — PN]T||12E -

N 2 N N 2

DAY PASFRICEED il PASE:H S 3 o S
2

X - B2

— b, where b,
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Which K to choose for approximation?

o Suppose X = UXVT, ¥ = diag{o1,...0r}
e Approximation Xx = ULk VT, ¥ = diag{o1, ...0x,0,0,...0}.

@ Then error of approximation Ex = X — )?K = USVT, where
Y = diag{O, 0, ...0, OK+1, ...O'R}

14/27



Singular value decomposition - Victor Kitov
Reduced (truncated) SVD

Which K to choose for approximation?

Select K giving relative error below some threshold t:
Ex|? R o2
K = argmin { I K||2F = Z,_,;<+12: <t
K ||X||F Ei:l g;

We used theorem 3 for calculation of Frobenius matrix norm.
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Frobenius norm

Theorem 3

for any matrix X and its singular value decomposition A= ULV,
> = diag{al, ...UR}.'

R
2
X = foiz
i=1

Proof. Using lemmas 1 and 2, we obtain:
X7 = t[UZVTVZUT] = t[U(Z2UT)] =

R
= (U =[] =) o?
r=1
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Lemmas

For any X € R¥D ||X||2 = tr XXT \

Proof. {XXT}I.J = Zszl XikX/fj = 25:1 XikXjk- SO

N N

D
e XXT = XX} =Y xaexi = |IXII7

i=1 i=1 k=1
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Lemmas

For any A € RVP and B € RPN
tr AB = tr BA

Proof. {AB},, = 25 1 an,dbd n, SO

tr AB = Z{AB},, n= Z Z an,dbd,n

n=1d=1
{BA}d,d = Zn 1 bd nan d, SO

tr BA = Z{BA}dd_ZZbd,,and—

d=1 n=1
D

= Z a,,7dbd,,, =trAB

n=1d=1
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Dimensionality reduction

- D ——» - K-

> -— D —>

@ rows of U give reduced representation of rows of X.

o x, cRP — y, e RK
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Memory efficiency

Storage costs of X € RMP | assuming N > D and each element
taking 1 byte:

Memory storage costs

’ representation of X memory requirements ‘
original X ?
fully SVD decomposed ?
reduced SVD to rank K ?
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Performance efficiency

e Multiplication Xq

e X - normalized documents representation
e g - normalized search query

] representation of X \ Xq complexity ‘
original X ?
reduced SVD to rank K ?
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Example

o
2
S
Q
g
N g
1N AL
c| 2| oL | H | x
= _f_U Na] .= —
ElB|E|s|g|2

GhJ E v} 4 (o)
FlO I xlF|ag|<
Andrew | 4 | 5| 5| 0| 0|0
John | 4 | 4| 5|00 |0
Matthew | 5 | 5 |4 | 0| 0 |0
Anna | 0| 0| 0|5 |5 |5
Maria| 0| 0| 0| 5|5 |4
Jessika | 0 | 0| 0| 4|5 |4
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Example

0. 06 —-03 0 0. -08

0. 05 —-05 0 0 0.6

y— |0 06 08 o0 0. 0.2
06 0. 0. —08 —0.2 0.

06 0. 0. 02 08 0.

05 0. 0. 06 —06 O.
¥ =diag{(14. 13.7 1.2 0.6 0.6 05)}
0. O 0. 06 06 05

05 06 06 O 0. 0.

yT_ |05 03 -08 o 0. 0.

0. 0. 0. -02 08 —056
-0. -0. —-0. 08 -02 -06
06 —-08 0.2 0. 0. 0.
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Example (excluded insignificant concepts)

0. 0.6
0. 05
0. 0.6

Ua 06 0
06 0.
05 0.

Yo = diag{(14. 13.7)}

yr_ (0 0. 0. 06 06 05
2 05 06 06 0. 0. O

Concepts may be

@ patterns among movies (along j) - action movie / romantic movie
@ patterns among people (along i) - boys / girls

Dimensionality reduction case: patterns along j axis.
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Recommendation system with SVD

Applications

@ Example: new movie rating by new person
x=(5 000 0 0)
e Dimensionality reduction: map x into concept space:
y=V)x= (0 2.7)
@ Recommendation system: map y back to original movies

space:
X=yV) =(15 1.6 1.6 0 0 0)
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