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Convex sets

De�nition 1

Set X is convex if ∀x , y ∈ X , ∀α ∈ (0, 1) :

αx + (1− α)y ∈ X

We will suppose that all functions, considered in this lecture will be

de�ned on convex sets.
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Convex functions

Convex functions1

De�nition 2

Function f (x) is convex on a set X if ∀α ∈ (0, 1], x1 ∈ X , x2 ∈ X :

f (αx1 + (1− α) x2) ≤ αf (x1) + (1− α)f (x2)

1Using norm axioms, prove that any norm will be a convex function.
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Convex functions

Multivariate and univariate convexity

Theorem 1

Let f : RD → R. f (x) is convex <=> g(α) = f (x + αv) is 1-D
convex for ∀x , v ∈ RD and ∀α ∈ R such that x + αv ∈ dom(f ).

=> Take ∀x , v ∈ RD and ∀α1, α2, β ∈ R. Using convexity of f :

g(βα1 + (1− β)α2) = f (x + v(βα1 + (1− β)α2))
= f (β(x + α1v) + (1− β)(x + α2v))

≤ βf (x + α1v) + (1− β)f (x + α2v) = βg(α1) + (1− β)g(α2)
so g(α) is convex.

<= Take ∀x , y ∈ dom(f ) and ∀α ∈ (0, 1). Then using convexity of

g(α) = f (x + α(y − x)):

g(α)︸︷︷︸
f ((1−α)x+αy)

= g(0 · (1− α) + 1 · α) ≤ (1− α)g(0)︸︷︷︸
f (x)

+ αg(1)︸︷︷︸
f (y)
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Convex functions

Properties

Theorem 2

Suppose f (x) is twice di�erentiable on dom(f ). Then the following

properties are equivalent:

1 f (x) is convex

2 f (y) ≥ f (x) +∇f (x)T (y − x) ∀x , y ∈ dom(f )

3 ∇2f (x) � 0 ∀x ∈ dom(f )

We will prove theorem 2 by proving that 1⇔ 2 and 2⇔ 3.
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Proof 1=>2

By de�nition of convexity ∀λ ∈ (0, 1), x , y ∈ dom(f ):

f (λy + (1− λ)x) ≤ λf (y) + (1− λ)f (x) = λ(f (y)− f (x)) + f (x)⇒

f (y)− f (x) ≥ f (x + λ(y − x))− f (x)

λ

In the limit λ ↓ 0:

f (y)− f (x) ≥ ∇f T (x)(y − x)

Here we used Taylor's expansion

f (x + λ(y − x)) = f (x) +∇f (x)Tλ(y − x) + o(λ ‖y − x‖)
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Proof 2=>1

Take ∀x , y ∈ dom(f ). Apply property 2 to x , y and

z = λx + (1− λ)y . We get

f (x) ≥ f (z) +∇f T (z)(x − z) (1)

f (y) ≥ f (z) +∇f T (z)(y − z) (2)

Multiplying 1 by λ and 2 by (1− λ) and adding, we get

λf (x) + (1− λ)f (y) ≥ f (z) +∇f T (z)(λx + (1− λ)y − z)

= f (z) = f (λx + (1− λ)y)
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Proof 2=>3, 1 dimensional case

Take ∀x , y ∈ dom(f ), y > x . Following property 2, we have:

f (y) ≥ f (x) + f ′(x)(y − x)

f (x) ≥ f (y) + f ′(y)(x − y)

So

f ′(x)(y − x) ≤ f (y)− f (x) ≤ f ′(y)(y − x)

After dividing by (y − x)2 we get

f ′(y)− f ′(x)

y − x
≥ 0 ∀x , y , x 6= y

Taking y → x we get

f ′′(x) ≥ 0 ∀x ∈ dom(f )

9/37



Convexity theory - Victor Kitov

Convex functions

Proof 3=>2

By mean value version of Taylor theorem we get for some z ∈ [x , y ]:

f (y) = f (x) +∇f (x)(y − x) +
1

2
(y − x)T∇2f (z)(y − x)

≥ f (x) +∇f (x)(y − x)

since ∇2f (z) < 0 ∀z by condition 3.
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2=>3, 1 dimensional case

For any x , y , λ ∈ [0, 1] by Taylor expansion we get:

f (x + λ(y − x)) = f (x) + f ′(x)λ(y − x) +
1

2
f ′′(x)λ2(y − x)2 + o

(
λ3
)

≥ f (x) + f ′(x)(y − x)

In the limit λ→ 0 we get f ′′(x) ≥ 0.
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Proof 2=>3 for D-dimensional case

From theorem 1 convexity of f (x) is equivalent to convexity of

g(α) = f (x + αv) ∀x , v ∈ RD and α ∈ R such that

z = x + αv ∈ dom(f ). From property 3 this is equivalent to

g ′′(α) = vT∇2f (x + αv)v ≥ 0

Because z and v are arbitrary, last condition is equivalent to

∇2f (x) < 0.
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Optimality for convex functions

Theorem 3

Suppose convex function f (x) satis�es ∇f (x∗) = 0 for some x∗.
Then x∗ is the global minimum of f (x).

Proof. Since f (x) is convex, then from condition 2 of

theorem 2∀x , y ∈ dom(f ):

f (x) ≥ f (y) +∇f T (y)(x − y)

Taking y = x∗ we have

f (x) ≥ f (x∗) +∇f T (x∗)(x − x∗) = f (x∗)

Since x was arbitrary, x∗ is a global minimum.
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Convex functions

Optimality for convex functions3

Comments on theorem (3):

∇f (x∗) = 0 is necessary condition for local minimum.

Together with convexity it becomes su�cient condition.

∇f (x∗) = 0 without convexity is not su�cient for any local

optimality.

Properties of minimums of convex function de�ned on convex set2:

Set of global minimums is convex

Local minimum is global minimum

2Prove them
3Prove that global minimums of convex function (de�ned on convex set)

form a convex set.
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Convex functions

Jensen's inequality

Theorem 4

For any convex function f (x) and random variable X it holds that

E[f (X )] ≥ f (EX )

Proof. For simplicity consider di�erentiable4 f (x). From property 2

of theorem 2 ∀x , y ∈ dom(f ):

f (x) ≥ f (y) +∇f T (y)(y − x)

By taking x = X and y = EX , obtain

f (X ) ≥ f (EX ) +∇f T (EX )(EX − X )

After taking expectation of both sides, we get

Ef (X ) ≥ f (EX ) +∇f T (EX )(EX − EX ) = f (EX )

4for general proof consider sub-derivatives, which always exist.
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Convex functions

Alternative proof of Jensen's inequality

Convexity => by induction for ∀K = 2, 3, ... and
∀pk ≥ 0 :

∑K
k=1

pk = 1

K∑
k=1

f (pkxk) ≤
K∑

k=1

pk f (xk) (3)

For r.v. XK with P(XK = xi ) = pi (3) becomes

f (EXK ) ≤ Ef (XK ) (4)

For arbitrary X we may consider XK ↑ X . In the limit K →∞
(4) becomes5

f (EX ) ≤ Ef (X )

5Strictly speaking you need to prove continuity of f and E here.
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Convex functions

Illustration of Jensen's inequality
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Generating convex functions6

Any norm is convex

If f (·) and g(·) are convex, then
f (x) + g(x) is convex
F (x) = f (g(x)) is convex for non-decreasing f (·)
F (x) = max{f (x), g(x)} is convex

These properties can be extrapolated on any number of

functions.

If f (x) is convex, x ∈ RD , then for all α > 0, Q ∈ RDxD ,
Q < 0, B ∈ RKxD , c ∈ RK , K = 1, 2, ... the following
functions are also convex:

αf (x) is convex
BT x + c
xTQx + Bx + c ,
F (x) = f (Bx + c), for x ∈ RD ,

6Prove these properties.
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Exercises

Are the following functions convex?

f (x) = |x |
f (x) = ‖x‖

1
+ ‖x‖2

2

f (x) = (3x1 − 5x2)
2 + (4x1 − 2x2)

2

x ln x , − ln x , −xp for x > 0, p ∈ (0, 1).

xp, p > 1.

ln(1+ e−x), [1− x ]+

F (w) =
∑N

n=1
[1− wT xn]+ + λ

∑D
d=1
|wd |

F (w) =
∑N

n=1
ln(1+ e−w

T xn) + λ
∑D

d=1
w2

d
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Convex functions

Exercises

Suppose f (x) and g(x) are convex. Can the following functions be

non-convex?

f (x)− g(x), f (x)g(x), f (x)/g(x), |f (x)|, f 2(x),
min{f (x), g(x)}

Suppose f (x) is convex, f (x) ≥ 0 ∀x ∈ dom(f ),k ≥ 1. Can

g(x) = f k(x) be non-convex?
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Strictly convex functions7

De�nition 3

Function f (x) is strictly convex on a set X if

∀α ∈ (0, 1], x1, x2 ∈ X , x1 6= x2:

f (αx1 + (1− α) x2) < αf (x1) + (1− α)f (x2)

7Prove that global minimum of strictly convex function de�ned on convex
set is unique.
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Strictly convex functions

Criterion for strict convexity

Theorem 5

Function f (x) is strictly convex <=> ∀x , y ∈ dom(f ), x 6= y :

f (y) > f (x) +∇f (x)T (y − x) (5)

<= The same as proof 2=>1 for theorem 2 with replacement

≥→>.
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Strictly convex functions

Criterion for strict convexity

=> Using property 2 of theorem 2 we have

∀x , z : f (z) ≥ f (x) +∇f (x)T (z − x) (6)

Suppose (5) does not hold, so

∃y : f (y) = f (x) +∇f (x)T (y − x). It follows that

∇f (x)T (y − x) = f (y)− f (x) (7)

Consider u = αx + (1− α)y for ∀α ∈ (0, 1). Using (6) and (7):

f (u) = f (αx + (1− α)y) ≥ f (x) +∇f (x)T (u − x)

= f (x) +∇f (x)T (αx + (1− α)y − x)

= f (x) +∇f (x)T (1− α)(y − x)

= f (x) + (1− α)(f (y)− f (x)) = (1− α)f (y) + αf (x)

Obtained inequality f (αx + (1− α)y) ≥ (1− α)f (y) + αf (x)
contradicts strict convexity. So (6) should hold as strict

inequality (5).
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Strictly convex functions

Jensen's inequality

Theorem 6

For strictly convex function f (x) equality in Jensen's inequality

E[f (X )] ≥ f (EX )

holds <=> X = EX with probability 1.

Proof. 1) Consider X 6= EX with probability 1:

From theorem (5) ∀x 6= y ∈ dom(f ):

f (x) > f (y) +∇f T (y)(y − x)

By taking x = X and y = EX , obtain

f (X ) > f (EX ) +∇f T (EX )(EX − X )

After taking expectation of both sides, we get

Ef (X ) > f (EX ) +∇f T (EX )(EX − EX ) = f (EX )
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Strictly convex functions

Jensen's inequality

2) Consider case X = EX with probability 1.

In this case with probability 1

f (X ) = f (EX )

which after taking expectation becomes

Ef (X ) = Ef (EX ) = f (EX )
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Strictly convex functions

Properties of strictly convex functions10

Properties of minimums of strictly convex function de�ned on

convex set8:

Global minimum is unique.

If ∇2f (x) � 0 ∀x ∈ dom(f ), then f (x) is strictly convex

proof: use mean value version of Taylor theorem and strict
convexity criterion (5).
strict convexity does not imply ∇2f (x) � 0∀x ∈ dom(f )9

8Prove them
9Think of an example.

10Prove that global minimums of convex function (de�ned on convex set)
form a convex set.
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Concave functions

De�nition 4

Function f (x) is concave on a set X if

∀α ∈ (0, 1], x1 ∈ X , x2 ∈ X :

f (αx1 + (1− α) x2) ≥ αf (x1) + (1− α)f (x2)

De�nition 5

Function f (x) is strictly concave on a set X if

∀α ∈ (0, 1], x1, x2 ∈ X , x1 6= x2:

f (αx1 + (1− α) x2) > αf (x1) + (1− α)f (x2)
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Concave & strictly concave functions

Concave function example
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Concave & strictly concave functions

Properties of concave functions

f (x) is convex ⇐⇒−f (x) is concave
Di�erentiable function f (x) is concave <=>∀x , y ∈ dom(f ):

f (y) ≤ f (x) +∇f (x)T (y − x)

Twice di�erentiable function f (x) is concave

<=>∀x ∈ dom(f ):∇2f (x) < 0

Global maximums of concave function on convex set form a

convex set.

Local maximum of a concave function is global

∇f (x∗) = 0<=>x∗ is global maximum.

Jensen's inequality: for random variable X and concave f (x):

E[f (X )] ≤ f (EX )

equality is achieved <=> f is linear on {x : P(X = x) > 0}.
this holds when X = EX with probability 1.
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Concave & strictly concave functions

Properties of strictly concave functions

f (x) is strictly convex ⇐⇒−f (x) is strictly concave
Di�erentiable function f (x) is concave

<=>∀x , y ∈ dom(f ), x 6= y :

f (y) < f (x) +∇f (x)T (y − x)

∀x ∈ dom(f ):∇2f (x) � 0 => f (x) is strictly concave.

Global maximum of strictly concave function on a convex set

is unique.

Jensen's inequality: for random variable X , and strictly

concave f (x):
E[f (X )] < f (EX )

when X 6= EX with some probability>0.

When X = EX with probability 1 E[f (X )] = f (EX )
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Kullback-Leibler divergence

Kullback-Leibler divergence between 2 probability discrete

distributions11

KL(P||Q) :=
∑
i

Pi ln
Pi

Qi

Kullback-Leibler divergence between 2 probability density

functions12:

KL(P||Q) :=

∫
P(x) ln

P(x)

Q(x)
dx

11Suppose P(i , j) = P1(i)P2(j) and Q(i , j) = Q1(i)Q2(j). Show that
KL(P||Q) = KL(P1||Q1) + KL(P2||Q2)

12Show that KL diveregence is invariant to reparamtrization x → y(x)
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Kullback-Leibler divergence

Properties of KL(P||Q):

de�ned only for distributions P,Q such that Pi = 0⇒ Qi = 0
KL(P||Q) 6= KL(Q||P)
symmetrical version:
KLsym(P||Q) := 1

2
(KL(P||Q) + KL(Q||P))

KL(P||Q) ≥0 ∀P,Q
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Kullback-Leibler divergence

Non-negativity of KL

KL(P||Q) ≥ 0 ∀P,Q
Proof: Consider r.v. U such that P(Ui =

Qi
Pi
) = Pi

KL(P||Q) =
∑
i

Pi ln
Pi

Qi
=
∑
i

Pi

(
− ln

Qi

Pi

)
= E (− lnU)

≥ {convexity of − ln(·)+Yensen's inequality}

≥ − lnEU = − ln
∑
i

Pi
Qi

Pi
= − ln

∑
i

Qi = − ln 1 = 0

KL(P||Q) = 0 is achieved ⇔Pi = Qi ∀i .
Proof: KL(P||Q) = 0⇔ U ≡ const = c with probability 1

which gives
Pi

Qi
= c ⇔ Pi = cQi ∀i (8)

Summing (8) by i we obtain 1 = c , so Pi = Qi ∀i .
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Connection of KL and maximum likelihood

Consider discrete r.v. ξ ∈ {1, 2, ...K}. Suppose we estimate
probabilities p(ξ = i) with distribution qθ(i) parametrized by θ. We

observe N independent trials of ξ, #[ξ = i ] = Ni . Maximum

likelihood estimate for θ gives:

θ̂ = arg max
θ

N∏
n=1

K∏
i=1

qθ(i)
I[ξn=i ] = arg max

θ

K∏
i=1

qθ(i)
Ni

= arg max
θ

(
K∏
i=1

qθ(i)
Ni

)1/N

= arg max
θ

K∏
i=1

qθ(i)
Ni/N

= arg max
θ

K∑
i=1

Ni

N
ln qθ(i) = {p(i) :=

Ni

N
,

K∑
i=1

p(i) ln p(i) = const(θ)}

= arg min
θ

{
K∑
i=1

p(i) ln p(i)−
K∑
i=1

p(i) ln qθ(i)

}
= arg min

θ
KL(p||q(θ))
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