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Convex sets

Definition 1
Set X is convex if Vx,y € X, Va € (0,1) :

ax+(l—a)ye X

We will suppose that all functions, considered in this lecture will be
defined on convex sets.
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Convex functions

1

Definition 2
Function f(x) is convex on a set X if Yo € (0,1], x; € X, x2 € X:

flaxi+ (1 —a)x) <af(x))+ (1 —a)f(x)

Gy + (1 fag

1Using norm axioms, prove that any norm will be a convex function.
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Multivariate and univariate convexity

Let f : RP — R. f(x) is convex <=> g(a) = f(x + av) is I-D
convex for ¥x,v € RP and Vo € R such that x + av € dom(f).

=> Take Vx, v € RP and Vaq, as, 3 € R. Using convexity of f:

g(Bar + (1 — Bag) = f(x + v(Bag + (1 — B)az))
= f(B(x +a1v) + (1 = B)(x + azv))
< Bf(x+arv) + (1 = B)f(x + azv) = Bg(aa) + (1 — B)g(a2)
<= Takge(vzgy € dom(f) and Ya € (0,1). Then using convexity of
gla) = f(x+ a(y — x)):
gla) =g(0-(1-a)+1-a)<(1-a)g(0)+ag(l)
=~ N =~

f((1—a)xtay) f(x) f(y)
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Properties

Theorem 2

Suppose f(x) is twice differentiable on dom(f). Then the following
properties are equivalent:

Q f(x) is convex
Q f(y)>f(x)+VF(x)"(y —x) Vx,y € dom(f)
Q V?f(x) =0 Vx € dom(f)

We will prove theorem 2 by proving that 1 < 2 and 2 < 3.
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Proof 1=>2

By definition of convexity VA € (0,1), x,y € dom(f):

FOy + (1= A)x) <M (y) + (1= N (x) = MF(y) = F(x)) + f(x) =

f(x+ My —x)) —f(x)
)~ flx) > .

In the limit A | O:
Fy) = f(x) 2 VT (x)(y —x)
Here we used Taylor’s expansion

Fx + Aly = x)) = f(x) + VF()TAly = x) + o(Ally = x]))
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Proof 2=>1

Take Vx,y € dom(f). Apply property 2 to x,y and
z=XAx+(1—A)y. We get

f(x) > f(z2) + VT (2)(x — 2) (1)
fly) > f(z)+ VT (2)(y — 2) (2)

Multiplying 1 by A and 2 by (1 — A) and adding, we get

M(x)+ (1= NFf(y) > f(2) + VET(2)(Mx + (1 = Ny — 2)
=f(z) =f(Ax+ (1= N)y)
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Proof 2=>3, 1 dimensional case

Take Vx, y € dom(f), y > x. Following property 2, we have:

F(y) = f(x) + )y = x)

Fx) > f(y) + f(y)(x —y)
So

FO)(y = x) < fy) = £(x) < F(y)(y — x)
After dividing by (y — x)? we get
f'(y) = f'(x)
y — X

>0 Vx,y,x#y

Taking y — x we get
f"(x) >0 Vx € dom(f)
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Proof 3=>2

By mean value version of Taylor theorem we get for some z € [x, y|:

F(y) = FO) + VA = x) + 50 —x)T A (2)y — x)
> f(x) + VF(x)(y — x)

since V2f(z) =0 Vz by condition 3.
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2=>3, 1 dimensional case

For any x,y, A € [0,1] by Taylor expansion we get:

x4 Aly = x)) = F6) + FOMy = x) + 57 (N (y = xP + 0 (V)
> F(x) + F()(y — X)

In the limit A\ — 0 we get ”(x) > 0.
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Proof 2=>3 for D-dimensional case

From theorem 1 convexity of f(x) is equivalent to convexity of
g(a) = f(x + av) ¥x,v € RP and o € R such that
z = x+ av € dom(f). From property 3 this is equivalent to

g"(@) = vIV3f(x 4+ av)v > 0

Because z and v are arbitrary, last condition is equivalent to
V2f(x) = 0.
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Optimality for convex functions

Suppose convex function f(x) satisfies Vf(x*) = 0 for some x*.
Then x* is the global minimum of f(x).

Proof. Since f(x) is convex, then from condition 2 of
theorem 2Vx,y € dom(f):

F(x) > f(y) + VFT(y)(x ~ )
Taking y = x* we have
f(x) > F(x*) + VT (x*)(x — x*) = f(x*)
Since x was arbitrary, x* is a global minimum. O
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Optimality for convex functions®

Comments on theorem (3):

e Vf(x*) =0 is necessary condition for local minimum.
Together with convexity it becomes sufficient condition.

e Vf(x*) = 0 without convexity is not sufficient for any local
optimality.
Properties of minimums of convex function defined on convex set?:
@ Set of global minimums is convex

@ Local minimum is global minimum

2Prove them
3Prove that global minimums of convex function (defined on convex set)

form a convex set.
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Jensen’s inequality

Theorem 4
For any convex function f(x) and random variable X it holds that

E[f(X)] > f(EX)

Proof. For simplicity consider differentiable* f(x). From property 2
of theorem 2 Vx,y € dom(f):

F(x) = f(y) + VT (y)(y —x)
By taking x = X and y = EX, obtain
f(X) > f(EX) + VFT(EX)(EX — X)
After taking expectation of both sides, we get
Ef(X) > f(EX) + VT (EX)(EX — EX) = f(EX)

*for general proof consider sub—der{'\sl/a3t7ives, which always exist.
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Alternative proof of Jensen’s inequality

e Convexity => by induction for VK = 2,3, ... and
Yok >0: S p=1

K

F(prexi) < > prf () (3)

1 k=1

M =

>
I

e For r.v. Xk with P(Xk = x;) = p;i (3) becomes
f(EXk) < Ef(Xk) (4)

@ For arbitrary X we may consider Xk T X. In the limit K — oo
(4) becomes®
f(EX) < Ef(X)

5Strictly speaking you need to prove continuity of f and E here.
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lllustration of Jensen’s inequality

Y=9(X)

E{v}{ >
Y(E{x})
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Generating convex functions®

@ Any norm is convex

o If f(-) and g(+) are convex, then
o f(x)+ g(x) is convex
o F(x)=f(g(x)) is convex for non-decreasing f(-)
o F(x) = max{f(x),g(x)} is convex

@ These properties can be extrapolated on any number of
functions.

e If f(x) is convex, x € RP, then for all @ > 0, Q € RPP,
Q=0 BeROP ccRK K =1,2,.. the following
functions are also convex:

af(x) is convex

BTx+c

xTQx + Bx + c,

F(x) = f(Bx +c), for x € RP,

®Prove these properties.
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Exercises

Are the following functions convex?
o F(x) = Ix]
F(x) = IIxlly + IIx[3
f(x) = (3x1 — 5x2)? + (4x1 — 2x2)?
xInx, —Inx, —xP for x > 0, p € (0, 1).
xP, p>1.
In(1+4e), [1 —x]+
Fw) =30 a[t = whxle + X325 [wal
F(w) =5l In(l+e7") + A Y5 w
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Exercises

Suppose f(x) and g(x) are convex. Can the following functions be
non-convex?
° f(x) —g(x), f(x)g(x). f(x)/g(x),
min{f(x), g(x)}
Suppose f(x) is convex, f(x) > 0 Vx € dom(f),k > 1. Can
g(x) = f¥(x) be non-convex?

, F2(x),

f(x)
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Strictly convex functions’

Definition 3

Function f(x) is strictly convex on a set X if
Va € (0,1], x1, x2 € X, x1 # X

flaxa+ (1 —a)x) <af(x)+ (1 —a)f(x)

"Prove that global minimum of strictly convex function defined on convex

set is unique.
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Criterion for strict convexity

Function f(x) is strictly convex <=> Vx,y € dom(f), x # y:

fly) > f(x) + V()" (y = x) ()

<= The same as proof 2=>1 for theorem 2 with replacement
> —>.
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Criterion for strict convexity

=> Using property 2 of theorem 2 we have
Vx,z: f(z) > F(x)+ VF(x)T(z = x) (6)

Suppose (5) does not hold, so
Jy: f(y) = f(x) + VF(x)T(y — x). It follows that

V)T (y = x) = f(y) = f(x) (7)
Consider u = ax + (1 — a)y for Vo € (0,1). Using (6) and (7):

fu) = flax+ (1 — a)y) > f(x) + VF(x)T (v - x)
= f(x) + V()T (ax+ (1 — @)y — x)
=f(x)+VFx)T(1-a)y—x)
= () + (1 = a)(f(y) = f(x)) = (1 — )f(y) + af(x)
@ Obtained inequality f(ax + (1 — a)y) > (1 — a)f(y) + af(x)

contradicts strict convexity. So (6) should hold as strict
inequality (5).
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Jensen’s inequality

Theorem 6

For strictly convex function f(x) equality in Jensen's inequality
E[f(X)] > f(EX)

holds <=> X = EX with probability 1.

Proof. 1) Consider X # EX with probability 1:
From theorem (5) Vx # y € dom(f):

f(x) > f(y) + VT (y)(y — x)
By taking x = X and y = EX, obtain
f(X) > f(EX) 4+ VFT(EX)(EX — X)
After taking expectation of both sides, we get
Ef(X) > f(EX) + VFT(EX)(EX — EX) = f(EX)
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Jensen’s inequality

2) Consider case X = EX with probability 1.
In this case with probability 1

f(X) = f(EX)
which after taking expectation becomes

Ef(X) = Ef(EX) = f(EX)
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Properties of strictly convex functions!®

Properties of minimums of strictly convex function defined on
convex set®:

@ Global minimum is unique.

o If V2f(x) = 0Vx € dom(f), then f(x) is strictly convex

e proof: use mean value version of Taylor theorem and strict
convexity criterion (5).
e strict convexity does not imply V2f(x) = 0Vx € dom(f)°

8Prove them
°Think of an example.
10Prove that global minimums of convex function (defined on convex set)

form a convex set.
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Concave functions

Function f(x) is concave on a set X if
Va € (0,1], x1 € X, x € X:

flaxi+ (1 —a)x) > af(x1) + (1 — a)f(x)

Definition 5

| A

Function f(x) is strictly concave on a set X if
Va € (0,1], x1,x € X, x1 # xo:

flaxi+ (1 —a)x) > af(x) + (1 — a)f(x)
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Concave function example
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Properties of concave functions

e f(x) is convex <= —f(x) is concave
e Differentiable function f(x) is concave <=>Vx,y € dom(f):

fly) < F(x)+ VF(x)T(y — x)

e Twice differentiable function f(x) is concave
<=>Vx € dom(f):V?f(x) = 0

@ Global maximums of concave function on convex set form a
convex set.

@ Local maximum of a concave function is global

e Vf(x*) =0<=>x* is global maximum.

@ Jensen's inequality: for random variable X and concave f(x):

E[f(X)] < f(EX)

o equality is achieved <=> f is linear on {x : P(X = x) > 0}.
o this holds when X = EX with probability 1.
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Properties of strictly concave functions

o f(x) is strictly convex <=—f(x) is strictly concave

e Differentiable function f(x) is concave
<=>Vx,y € dom(f), x # y:
Fly) < F(x) + VF(x)T(y = x)

Vx € dom(f):V?f(x) = 0 => f(x) is strictly concave.
@ Global maximum of strictly concave function on a convex set
is unique.

@ Jensen's inequality: for random variable X, and strictly
concave f(x):
E[f(X)] < f(EX)
when X # EX with some probability>0.
e When X = EX with probability 1 E[f(X)] = f(EX)
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Kullback-Leibler divergence

Kullback-Leibler divergence

o Kullback-Leibler divergence between 2 probability discrete
distributions!?

KL(P||Q) : ZPIn—

o Kullback-Leibler divergence between 2 probability density
functions!?:

KL(P||Q) := /P(X)In g((igdx

1Suppose P(i, ) = Pi(i)P2(j) and Q(i,}) = @i(i)Q2(j). Show that
KL(P||Q) = KL(P1||Q1) + KL(P2||Q2)
12Show that KL diveregence is invariant to reparamtrization x — y(x)
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Kullback-Leibler divergence

e Properties of KL(P||Q):

o defined only for distributions P, Q such that P, =0= Q; =0
o KL(P||Q) # KL(QIIP)
e symmetrical version:
KLsym(P||Q) := 5 (KL(PI|Q) + KL(Q|IP))
o KL(P||Q)>0VP,Q
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Non-negativity of KL

o KL(P||Q) > 0VP,Q
Proof: Consider r.v. U such that P(U; = %’) =P;

KL(P||Q) = ZPIn ZP( |n>:E(—InU)

> {conveX|ty of —In(-)+Yensen's inequality }

—InEU:—InZPi%:—InZQ,-:—Inlzo

e KL(P||Q) =0 is achieved &P; = Q; Vi.
Proof: KL(P||Q) =0« U = const = c with probability 1
which gives
Pi ,
aZC@P,‘ZCQ,‘ Vi (8)
Summing (8) by i/ we obtain 1 = ¢, so P; = Q; Vi.
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Connection of KL and maximum likelihood

Consider discrete r.v. £ € {1,2,...K}. Suppose we estimate
probabilities p(§ = i) with distribution gy(i) parametrized by 6. We
observe N independent trials of £, #[¢ = i] = N;. Maximum
likelihood estimate for 6 gives:

0 = arg max H H qo(i H[f" - = arg maxH qo(i

n=1i=1

P 1/N
= arg max (H qo(i)" =arg maxH qo(i)Ni/N
0 i=1

K N N K
= arg emaxz NI Inge(i) = {p(i) := A;’ Zp(i) In p(i) = const(0)}
i=1 i=1

K
= arg min {Z ) In p(i Z:p )In go(i) } = arg(’min KL(p||q(8))
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