Логические алгоритмы классификации

Воронцов Константин Вячеславович vokov@forecsys.ru http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

Видеолекции: http://shad.yandex.ru/lectures

26 февраля 2015

Содержание

- Понятия закономерности и информативности
 - Понятие закономерности
 - Тесты Бонгарда
 - Критерии информативности
- Индукция правил (Rule Induction)
 - Виды правил
 - Поиск информативных закономерностей
 - Решающий список
- З Решающие деревья
 - Алгоритмы ID3, C4.5, CART
 - Небрежные решающие деревья ODT
 - Решающий лес

Логическая закономерность

$$X^\ell = (x_i, y_i)_{i=1}^\ell \subset X imes Y$$
 — обучающая выборка, $y_i = y(x_i)$.

Логическая закономерность (правило, rule) — это предикат $R: X \to \{0,1\}$, удовлетворяющий двум требованиям:

- интерпретируемость:
 - 1) R записывается на естественном языке;
 - 2) R зависит от небольшого числа признаков (1-7);
- **2** информативность относительно одного из классов $c \in Y$:

$$p_c(R) = \#\{x_i : R(x_i) = 1 \text{ if } y_i = c\} \to \max;$$

 $n_c(R) = \#\{x_i : R(x_i) = 1 \text{ if } y_i \neq c\} \to \min;$

Если R(x) = 1, то говорят «R выделяет x» (R covers x).

Требование интерпретируемости

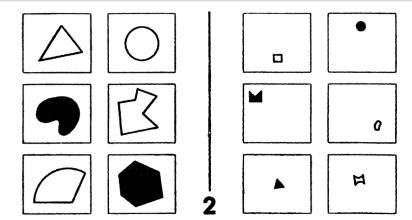
- 1) R(x) записывается на естественном языке;
- 2) R(x) зависит от небольшого числа признаков (1–7);

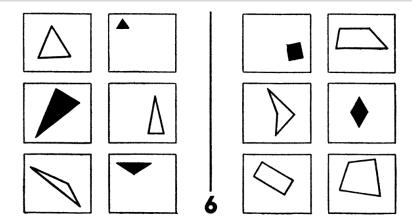
Пример (из области медицины)

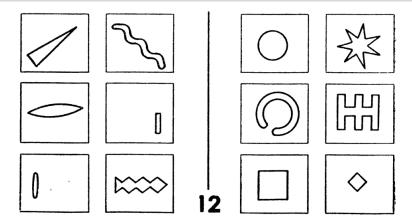
Если «возраст > 60» **и** «пациент ранее перенёс инфаркт», **то** операцию не делать, риск отрицательного исхода 60%.

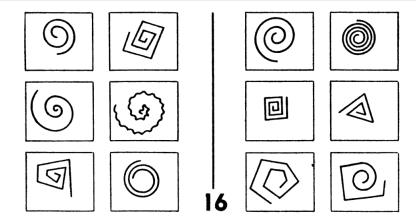
Пример (из области кредитного скоринга)

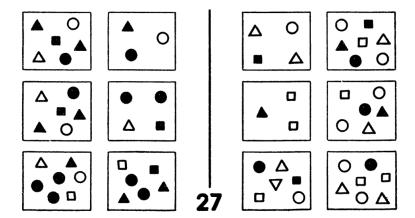
Если «в анкете указан домашний телефон» и «зарплата > \$2000» и «сумма кредита < \$5000» то кредит можно выдать, риск дефолта 5%.

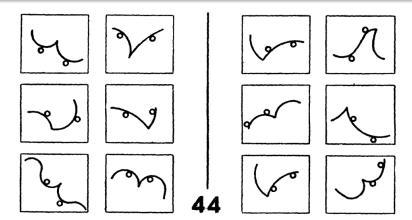


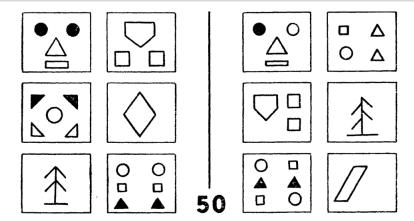


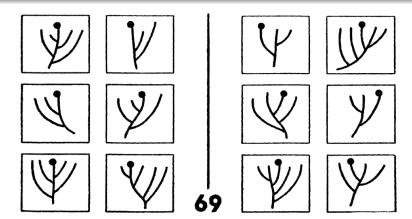












Основные вопросы построения логических алгоритмов

- Как изобретать признаки $f_1(x), \ldots, f_n(x)$?
 не наука, а искусство (размышления, озарения, эксперименты, консультации, мозговые штурмы,...)
- Какого вида закономерности R(x) нам нужны? простые формулы от малого числа признаков
- Как определять информативность?
 - так, чтобы одновременно p o max, n o min
- Как искать закономерности?перебором подмножеств признаков
- Как объединять закономерности в алгоритм?
 - любым классификатором (R(x) это тоже признаки)

Закономерность — интерпретируемый высокоинформативный одноклассовый классификатор с отказами.

Проблема оценивания информативности

Проблема: надо сравнивать закономерности R.

Как свернуть два критерия в один критерий информативности?

$$\begin{cases} p(R) \to \max & ? \\ n(R) \to \min \end{cases} \xrightarrow{?} I(p, n) \to \max$$

Очевидные, но не всегда адекватные свёртки:

- $I(p, n) = \frac{p}{p+n} \to \max$ (precision);
- $I(p, n) = p n \rightarrow \max$ (accuracy);
- $I(p, n) = p Cn \rightarrow \max$ (linear cost accuracy);
- $I(p, n) = \frac{p}{D} \frac{n}{M} \rightarrow \max$ (relative accuracy);

$$P_c = \#\{x_i \colon y_i = c\}$$
 — число «своих» во всей выборке; $N_c = \#\{x_i \colon y_i \neq c\}$ — число «чужих» во всей выборке.

Нетривиальность проблемы свёртки двух критериев

Пример:

при P = 200, N = 100 и различных p и n.

Простые эвристики не всегда адекватны:

р	n	p-n	p-5n	$\frac{p}{P} - \frac{n}{N}$	$\frac{p}{n+1}$	$IStat{\cdot}\ell$	$IGain{\cdot}\ell$	\sqrt{p} $-\sqrt{n}$
50	0	50	50	0.25	50	22.65	23.70	7.07
100	50	50	-150	0	1.96	2.33	1.98	2.93
50	9	41	5	0.16	5	7.87	7.94	4.07
5	0	5	5	0.03	5	2.04	3.04	2.24
100	0	100	100	0.5	100	52.18	53.32	10.0
140	20	120	40	0.5	6.67	37.09	37.03	7.36

Часто используемые критерии информативности

Адекватные, но неочевидные критерии:

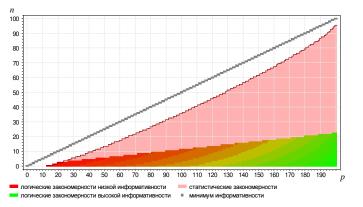
• энтропийный критерий прироста информации:

$$\mathsf{IGain}(p,n) = h\left(rac{P}{\ell}
ight) - rac{p+n}{\ell} h\left(rac{p}{p+n}
ight) - rac{\ell-p-n}{\ell} h\left(rac{P-p}{\ell-p-n}
ight) o \mathsf{max},$$
где $h(q) = -q\log_2 q - (1-q)\log_2 (1-q)$

- ullet критерий Джини (Gini impurity): IGini(p,n)= IGain(p,n) при h(q)=4q(1-q)
- точный статистический тест Фишера (Fisher's Exact Test): $\mathsf{IStat}(p,n) = -\tfrac{1}{\ell} \log_2 \tfrac{C_p^\rho C_N^n}{C_{p+N}^{\rho+n}} \to \mathsf{max}$
- критерий бустинга: $\sqrt{p} \sqrt{n} o \mathsf{max}$
- нормированный критерий бустинга: $\sqrt{p/P} \sqrt{n/N} \to \max$

Где находятся закономерности в (p, n)-плоскости

Логические закономерности: $\frac{n}{p+n}\leqslant 0.1, \ \frac{p}{P+N}\geqslant 0.05.$ Статистические закономерности: $\mathsf{IStat}(p,n)\geqslant 3.$



$$P = 200$$

 $N = 100$

Вывод: неслучайность — ещё не значит закономерность.

Энтропийный критерий информативности

Пусть ω_0 , ω_1 — два исхода с вероятностями q и 1-q.

Количество информации: $I_0 = -\log_2 q$, $I_1 = -\log_2 (1-q)$.

Энтропия — математическое ожидание количества информации:

$$h(q) = -q \log_2 q - (1-q) \log_2 (1-q).$$

Энтропия выборки X^{ℓ} , если исходы — это классы y=c, $y\neq c$:

$$H(y) = h\left(\frac{P}{\ell}\right).$$

Энтропия выборки X^ℓ после получения информации $R(x_i)_{i=1}^\ell$:

$$H(y|R) = \frac{p+n}{\ell}h\left(\frac{p}{p+n}\right) + \frac{\ell-p-n}{\ell}h\left(\frac{P-p}{\ell-p-n}\right).$$

Прирост информации (Information gain, IGain):

$$IGain(p, n) = H(y) - H(y|R).$$

Статистический критерий информативности

Точный тест Фишера. Пусть X — в.п., выборка X^{ℓ} — i.i.d. Гипотеза H_0 : y(x) и R(x) — независимые случайные величины. Тогда вероятность реализации пары (p,n) описывается гипергеометрическим распределением:

$$\mathsf{P}(p,n) = \frac{C_P^p C_N^n}{C_{P+N}^{p+n}}, \quad 0 \leqslant p \leqslant P, \quad 0 \leqslant n \leqslant N,$$

где $C_N^n = \frac{N!}{n!(N-n)!}$ — биномиальные коэффициенты.

Определение

Информативность предиката R(x) относительно класса $c \in Y$:

$$\mathsf{IStat}(p,n) = -\frac{1}{\ell} \log_2 \frac{C_p^p C_N^n}{C_{P+N}^{p+n}},$$

 $\mathsf{IStat}(p,n)\geqslant \mathit{I}_0$ — статистическая закономерность класса с.

Соотношение статистического и энтропийного критериев

Определение

Предикат R — закономерность по энтропийному критерию, если $IGain(p,n) > G_0$ при некотором G_0 .

Теорема

Энтропийный критерий IGain асимптотически эквивалентен статистическому IStat:

$$\mathsf{IStat}(p,n) \to \mathsf{IGain}(p,n)$$
 при $\ell \to \infty$.

Доказательство:

применить формулу Стирлинга к критерию IStat.

Соотношение критерия Джини и энтропийного критериев

Критерий прироста информации:

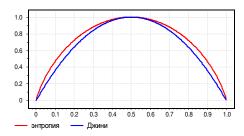
$$\mathsf{IGain}(p,n) = h\left(\tfrac{P}{\ell}\right) - \tfrac{p+n}{\ell} h\left(\tfrac{p}{p+n}\right) - \tfrac{\ell-p-n}{\ell} h\left(\tfrac{P-p}{\ell-p-n}\right) \to \mathsf{max},$$

• энтропийный критерий:

$$h(q) = -q \log_2 q - (1-q) \log_2 (1-q)$$

• критерий Джини (Gini impurity):

$$h(q) = 4q(1-q)$$



Часто используемые виды правил

1. Пороговое условие (решающий пень, decision stump):

$$R(x) = [f_j(x) \leqslant a_j]$$
 или $[a_j \leqslant f_j(x) \leqslant b_j]$.

2. Конъюнкция пороговых условий:

$$R(x) = \bigwedge_{j \in J} \left[a_j \leqslant f_j(x) \leqslant b_j \right].$$

3. $\mathit{Cиндром}$ — выполнение не менее d условий из J, (при d=|J| это конъюнкция, при d=1 — дизъюнкция):

$$R(x) = \left[\sum_{i \in J} \left[a_j \leqslant f_j(x) \leqslant b_j \right] \geqslant d \right],$$

Параметры J, a_j , b_j , d настраиваются по обучающей выборке путём оптимизации *критерия* информативности.

Часто используемые виды закономерностей

4. Полуплоскость — линейная пороговая функция:

$$R(x) = \Big[\sum_{j \in J} w_j f_j(x) \geqslant w_0\Big].$$

5. Шар — пороговая функция близости:

$$R(x) = \left[r(x, \frac{x_0}{x_0}) \leqslant \frac{w_0}{x_0} \right],$$

АВО — алгоритмы вычисления оценок [Ю. И. Журавлёв, 1971]:

$$r(x,x_0) = \max_{j \in J} w_j |f_j(x) - f_j(x_0)|.$$

SCM — машины покрывающих множеств [М. Marchand, 2001]:

$$r(x, x_0) = \sum_{i \in J} \mathbf{w}_i |f_i(x) - f_i(x_0)|^{\gamma}.$$

Параметры J, w_j, w_0, x_0 настраиваются по обучающей выборке путём оптимизации *критерия информативности*.

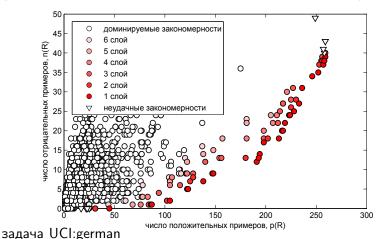
Поиск информативных закономерностей

```
Вход: выборка X^{\ell}:
Выход: множество закономерностей Z;
 1: начальное множество правил Z;
 2: повторять
     Z':= множество модификаций правил R\in Z;
     удалить слишком похожие правила из Z \cup Z';
 4:
     оценить информативность всех правил R \in Z';
 5:
     Z := наиболее информативные правила из Z \cup Z';
 7: пока правила продолжают улучшаться
 8: вернуть Z.
Частные случаи:
```

- стохастический локальный поиск (SLS)
- генетические (эволюционные) алгоритмы
- метод ветвей и границ

Отбор закономерностей по информативности в (p, n)-плоскости

Парето-фронт — множество недоминируемых закономерностей (точка R недоминируема, если правее и ниже точек нет)



Определение решающего списка

Решающий список (Decision List, DL) — алгоритм классификации $a\colon X\to Y$, который задаётся закономерностями $R_1(x),\ldots,R_T(x)$ классов $c_1,\ldots,c_T\in Y$:

$$x \longrightarrow \boxed{R_1(x)} \xrightarrow{0} \cdots \xrightarrow{0} \boxed{R_T(x)} \xrightarrow{0} c_0$$

$$\downarrow^1 \qquad \downarrow^1 \qquad$$

- 1: для всех t = 1, ..., T
- 2: если $R_t(x) = 1$ то
- 3: **вернуть** *c*_t;
- 4: **вернуть** c_0 отказ от классификации объекта x.

$$E(R_t,X^\ell)=rac{n(R_t)}{n(R_t)+p(R_t)} o \mathsf{min}$$
 — доля ошибок R_t на X^ℓ

Жадный алгоритм построения решающего списка

```
Вход: выборка X^{\ell}; семейство предикатов \mathscr{B};
    параметры: T_{\text{max}}, I_{\text{min}}, E_{\text{max}}, \ell_0;
Выход: решающий список \{R_t, c_t\}_{t=1}^T;
 1: U := X^{\ell}:
 2: для всех t := 1, ..., T_{\text{max}}
 3: выбрать класс c_t;
 4:
       максимизация информативности I(R, U) при
       ограничении на число ошибок E(R, U):
       R_t := \operatorname{arg\,max} I(R, U);
               R \in \mathcal{B}: E(R,U) \leqslant E_{\text{max}}
       если I(R_t, U) < I_{\min} то выход;
 5:
       оставить объекты, не покрытые правилом R_t:
 6:
       U := \{x \in U : R_t(x) = 0\}:
       если |U| \leqslant \ell_0 то выход;
 7:
```

Замечания к алгоритму построения решающего списка

• Параметр E_{max} управляет сложностью списка: $E_{\text{max}} \downarrow \Rightarrow p(R_t) \downarrow, T \uparrow$.

- \bullet Стратегии выбора класса c_t :
 - 1) все классы по очереди;
 - 2) на каждом шаге определяется оптимальный класс.
- Простой обход проблемы пропусков в данных.
- Другие названия: комитет с логикой старшинства (Majority Committee) голосование по старшинству (Majority Voting) машина покрывающих множеств (Set Covering Machine, SCM)
- Недостаток: низкое качество классификации

Определение бинарного решающего дерева

Бинарное решающее дерево — алгоритм классификации a(x), задающийся бинарным деревом:

- 1) $\forall v \in V_{\mathtt{внутр}} \; o \;$ предикат $eta_v : X o \{0,1\}$, $eta_v \in \mathscr{B}$
- 2) $\forall v \in V_{\text{лист}} \rightarrow \text{ имя класса } c_v \in Y.$

1:
$$v := v_0$$
;

2: пока
$$v \in V_{\mathsf{внутр}}$$

3: если
$$\beta_{v}(x) = 1$$
 то

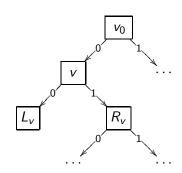
4: переход вправо:

$$v := R_v$$
;

- 5: иначе
- 6: переход влево:

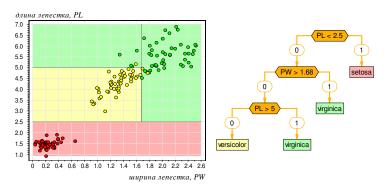
$$v := L_v$$
:

7: **вернуть** *c_v*.



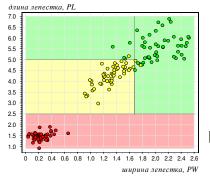
Пример решающего дерева

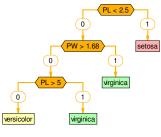
Задача Фишера о классификации цветков ириса на 3 класса, в выборке по 50 объектов каждого класса, 4 признака.



На графике: в осях двух самых информативных признаков (из 4) два класса разделились без ошибок, на третьем 3 ошибки.

Решающее дерево \rightarrow покрывающий набор конъюнкций





 $\begin{array}{|c|c|c|c|} \hline \textbf{setosa} & r_1(x) = \big[PL \leqslant 2.5\big] \\ \hline \textbf{virginica} & r_2(x) = \big[PL > 2.5\big] \land \big[PW > 1.68\big] \\ \hline \textbf{virginica} & r_3(x) = \big[PL > 5\big] \land \big[PW \leqslant 1.68\big] \\ \hline \textbf{versicolor} & r_4(x) = \big[PL > 2.5\big] \land \big[PL \leqslant 5\big] \land \big[PW < 1.68\big] \\ \hline \end{array}$

Жадный алгоритм построения дерева ID3

```
1: ПРОЦЕДУРА LearnID3 (U \subset X^{\ell});
2: если все объекты из U лежат в одном классе c \in Y то
      вернуть новый лист v, c_v := c;
3:
4: найти предикат с максимальной информативностью:
   \beta := \arg \max_{\beta \in \mathscr{B}} I(\beta, U);
5: разбить выборку на две части U = U_0 \sqcup U_1 по предикату \beta:
   U_0 := \{ x \in U \colon \beta(x) = 0 \};
   U_1 := \{ x \in U : \beta(x) = 1 \};
6: если U_0 = \emptyset или U_1 = \emptyset то
      вернуть новый лист v, c_v := \mathsf{Maxoputaphaim} \ \mathsf{knacc}(U);
7:
8: создать новую внутреннюю вершину v: \beta_v := \beta;
   построить левое поддерево: L_{\nu} := \text{LearnID3 } (U_0);
   построить правое поддерево: R_{\nu} := \text{LearnID3} (U_1);
9: вернуть V;
```

Разновидности многоклассовых критериев ветвления

1. Отделение одного класса (слишком сильное ограничение):

$$I(\beta, X^{\ell}) = \max_{c \in Y} I_c(\beta, X^{\ell}).$$

2. Многоклассовый энтропийный критерий:

$$I(\beta, X^{\ell}) = \sum_{c \in Y} h\left(\frac{P_c}{\ell}\right) - \frac{p}{\ell}h\left(\frac{p_c}{p}\right) - \frac{\ell - p}{\ell}h\left(\frac{P_c - p_c}{\ell - p}\right),$$

где
$$P_c = \#\{x_i \colon y_i = c\}$$
, $p = \#\{x_i \colon \beta(x_i) = 1\}$, $h(z) \equiv -z \log_2 z$.

3. Критерий Джини:

$$I(\beta, X^{\ell}) = \#\{(x_i, x_j) \colon \beta(x_i) = \beta(x_j) \text{ if } y_i = y_j\}.$$

4. *D*-критерий В.И.Донского:

$$I(\beta, X^{\ell}) = \#\{(x_i, x_i) : \beta(x_i) \neq \beta(x_i) \text{ if } y_i \neq y_i\}.$$

Обработка пропусков

На стадии обучения:

- ullet $eta_{m{v}}(x)$ не определено $\Rightarrow x_i$ исключается из U для I(eta,U)
- ullet $q_v = rac{|U_0|}{|U|}$ оценка вероятности левой ветви, $orall v \in V_{ exttt{BHYTP}}$
- ullet $P_{v}(y|x)=rac{1}{|U|}\#ig\{x_{i}\in U\colon y_{i}=yig\}$ для всех $v\in V_{ exttt{лист}}$

На стадии классификации:

- $\beta_{\nu}(x)$ определено \Rightarrow либо налево, либо направо: $P_{\nu}(y|x) = (1 \beta_{\nu}(x)) P_{L_{\nu}}(y|x) + \beta_{\nu}(x) P_{R_{\nu}}(y|x).$
- $\beta_{v}(x)$ не определено \Rightarrow пропорциональное распределение: $P_{v}(y|x) = q_{v}P_{L_{v}}(y|x) + (1-q_{v})P_{R_{v}}(y|x)$.
- ullet Окончательное решение наиболее вероятный класс: $y = rg \max_{y \in Y} P_{v_0}(y|x).$

Решающие деревья ID3: достоинства и недостатки

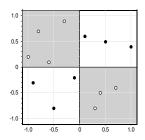
Достоинства:

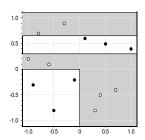
- Интерпретируемость и простота классификации.
- Гибкость: можно варьировать множество \mathscr{B} .
- Допустимы разнотипные данные и данные с пропусками.
- ullet Трудоёмкость линейна по длине выборки $O(|\mathscr{B}|h\ell).$
- Не бывает отказов от классификации.

Недостатки:

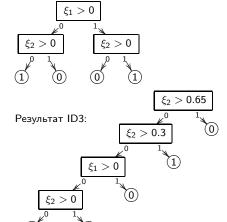
- Жадный ID3 переусложняет структуру дерева, и, как следствие, сильно переобучается.
- Фрагментация выборки: чем дальше v от корня, тем меньше статистическая надёжность выбора β_{v} , c_{v} .
- Высокая чувствительность к шуму, к составу выборки, к критерию информативности.

Жадный ID3 переусложняет структуру дерева





Оптимальное дерево для задачи XOR:



К. В. Воронцов (voron@forecsys.ru)

Усечение дерева (pruning). Алгоритм C4.5

```
X^k — независимая контрольная выборка, k \approx 0.5\ell.
 1: для всех v \in V_{\text{внутр}}
      S_{\nu} := подмножество объектов X^k, дошедших до \nu;
 3:
      если S_{\nu} = \emptyset то
         вернуть новый лист v, c_v := \mathsf{Maxoputaphaim} \ \mathsf{клacc}(U);
 4:
      число ошибок при классификации S_{\nu} четырьмя способами:
 5:
         r(v) — поддеревом, растущим из вершины v;
         r_I(v) — поддеревом левой дочерней вершины L_v;
         r_{R}(v) — поддеревом правой дочерней вершины R_{v};
         r_c(v) — к классу c \in Y.
 6:
      в зависимости от того, какое из них минимально:
         сохранить поддерево \nu;
         заменить поддерево \nu поддеревом L_{\nu};
         заменить поддерево \nu поддеревом R_{\nu};
         заменить поддерево v листом, c_v := \arg\min_{r \in V} r_c(v).
```

CART: деревья регрессии и классификации

Обобщение на случай регрессии: $Y=\mathbb{R},\;\;c_{v}\in\mathbb{R}$

Пусть U_{ν} — множество объектов x_i , дошедших до вершины ν

Значения в терминальных вершинах — МНК-решение:

$$c_{v}:=\hat{y}(U_{v})=\frac{1}{|U_{v}|}\sum_{x_{i}\in U_{v}}y_{i}$$

Критерий информативности — среднеквадратичная ошибка

$$I(\beta, U_{\nu}) = \sum_{x_i \in U_{\nu}} (\hat{y}_i(\beta) - y_i)^2,$$

где
$$\hat{y}_i(\beta) = \beta(x_i)\hat{y}(U_{v1}) + (1 - \beta(x_i))\hat{y}(U_{v0})$$
 — прогноз после ветвления β и разбиения $U_v = U_{v0} \sqcup U_{v1}$

CART: критерий Minimal Cost-Complexity Pruning

Среднеквадратичная ошибка со штрафом за сложность дерева

$$C_{lpha} = \sum_{x_i=1}^{\ell} ig(\hat{y}_i - y_iig)^2 + lpha |V_{ exttt{nuct}}|
ightarrow ext{min}$$

При увеличении lpha дерево последовательно упрощается. Причём последовательность вложенных деревьев единственна.

Из этой последовательности выбирается дерево с минимальной ошибкой на тестовой выборке (Hold-Out).

Для случая классификации используется аналогичная стратегия усечения, с критерием Джини.

Небрежные решающие деревья — ODT (Oblivious Decision Tree) [1991]

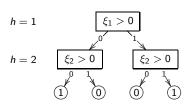
Решение проблемы фрагментации:

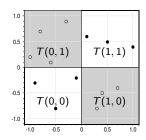
строится сбалансированное дерево высоты H; для всех узлов уровня h условие ветвления $\beta_h(x)$ одинаково; на уровне h ровно 2^{h-1} вершин; X делится на 2^H ячеек.

Классификатор задаётся $ag{tags}$ таблицей решений $T:\{0,1\}^H o Y:$

$$a(x) = T(\beta_1(x), \ldots, \beta_H(x)).$$

Пример: задача XOR, H = 2.





Алгоритм обучения ODT

Вход: выборка X^{ℓ} ; семейство правил \mathscr{B} ; глубина дерева H; Выход: условия $\beta_h,\ h=1,\ldots,H$; таблица $T:\{0,1\}^H\to Y$;

- 1: для всех h = 1, ..., H
- 2: найти предикат с максимальной информативностью:

$$\beta_h := \arg \max_{\beta \in \mathscr{B}} I(\beta_1, \dots, \beta_{h-1}, \beta; \overset{\mathsf{X}^{\ell}}{\lambda});$$

- 3: для всех $b \equiv (b_1, \dots, b_H) \in \{0, 1\}^H$
- 4: классификация по мажоритарному правилу:

$$T(b_1,...,b_H) := \arg\max_{c \in Y} \sum_{i=1}^{\ell} [y_i = c] \prod_{h=1}^{H} [\beta_h(x_i) = b_h];$$

$$I(\beta_1,\ldots,\beta_h) = \sum_{c \in Y} h\left(\frac{P_c}{\ell}\right) - \sum_{b \in \{0,1\}^h} \frac{|X_b|}{\ell} h\left(\frac{|X_b \cap X_c|}{|X_b|}\right);$$

$$X_b = \{x_i \colon \beta_s(x_i) = b_s, \ s = 1,\ldots,h\}, \quad X^{\ell} = \bigsqcup_{b \in \{0,1\}^h} X_b.$$

Случайный лес (Random Forest)

Голосование деревьев классификации, $Y = \{-1, +1\}$:

$$a(t) = \operatorname{sign} \frac{1}{T} \sum_{t=1}^{T} b_t(x).$$

Голосование деревьев регрессии, $Y = \mathbb{R}$:

$$a(t) = \frac{1}{T} \sum_{t=1}^{T} b_t(x).$$

- ullet каждое дерево $b_t(x)$ обучается по случайной выборке с повторениями
- в каждой вершине признак выбирается из случайного подмножества \sqrt{n} признаков
- признаки и пороги выбираются по критерию Джини
- усечений (pruning) нет

Резюме в конце лекции

- Основные требования к логическим закономерностям:
 - интерпретируемость, информативность, различность.
- Преимущества решающих деревьев:
 - интерпретируемость,
 - допускаются разнотипные данные,
 - возможность обхода пропусков;
- Недостатки решающих деревьев:
 - переобучение,
 - фрагментация,
 - неустойчивость к шуму, составу выборки, критерию;
- Способы устранения этих недостатков:
 - редукция,
 - специальные виды деревьев ODT, ADT и др.
 - композиции (леса) деревьев.

Yandex MatrixNet = градиентный бустинг над ODT.