Boosting - Victor Kitov

Boosting

Victor Kitov

February 25, 2016

1/30

Boosting - Victor Kitov

Motivation for ensembles

o Consider M classifiers fi(x), ...fu(x), performing binary
classification.

o Let &, ...&y denote indicators of mistakes by f1,...fyy on
particular observation x

@ Suppose &1, ...Ey are independent binomial variables with
PE=1)=p

@ Then E¢& = p, Var[&] = p(1—p)

e Consider F(x) be aggregating classifier, assigning x to the
class with maximum votes among fi(x), ...fy(x).

o Consider

&+ dm
=M

@ Probability of mistake = probability that majority of &1, ... y

are ones = P(n > 0.5).

1—
P(n > 0.5) — 0 as M — oo because En = p, Var[n] = ’%.

2/30

Boosting - Victor Kitov

Linear ensembles

Regression:

F(x) = fo(x) + c1fi(x) + ... + cufm(x)

Classification:

score(y|x) = fo(x) + c1f1(x) + ... + cmufm(x)

o Notation: fi(x),...fy(x) are called base learners, weak
learners, base models.

@ Too expensive to optimize fy(x), fi(x),...fy(x) and c1, ...cy
jointly for large M.

@ Idea: optimize fy(x) and then each pair (fn(x), cm) greedily.

@ After ensemble is built we can fine-tune cq,...cy by fitting
features fy(x), f1(x), ...fy(x) with linear regression/classifier.

3/30

Boosting - Victor Kitov

Forward stagewise additive modeling (FSAM)

Input: training dataset (x;,y;), / = 1,2,...N; loss function L(f,y),
general form of “base learner” h(x|vy) (dependent from parameter
~) and the number M of successive additive approximations.

© Fit initial approximation fy(x) = arg ming Zf\’:1 L(f(x),y))
Q@ Form=1,2,..M:
@ find next best classifier

N
(Cm> hm) = arg min >~ L(f_1(x7) + Chim (), yi7)
fimsem 553

@ set
fn(x) = fn—1(x) + Cmhm(x)

Output: approximation function
fu(x) = fo(x) + 714 ¢jm(x)

4/30

Boosting - Victor Kitov

Comments on FSAM

@ Number of steps M should be determined by performance on
validation set.

@ Step 1 need not be solved accurately, since its mistakes are
expected to be corrected by future base learners.

o we can take fy(x) = argminger Zf‘; L(B,y;) or simply
fo(l‘) =0.
@ By similar reasoning there is no need to solve 2.1 accurately
o typically very simple base learners are used such as trees of
depth=1,2,3.
@ For some loss functions, such as L(y, f(x)) = e ¥(*) we can
solve FSAM explicitly.

@ For general loss functions gradient boosting scheme should
be used.

5/30

Boosting - Victor Kitov

Adaboost (discrete version): assumptions

@ binary classification task y € {+1, -1}

o family of base classifiers h(x) = h(x|y) where + is some fitted
parametrization.

h(x) € {+1,-1}

classification is performed with

y = sign{fy(x) + c1f1(x) + ... + cmufm(x)}

optimized loss is L(y, f(x)) = e ¥'(®)

FSAM is applied

6/30

Boosting - Victor Kitov

Adaboost (discrete version): algorithm

Input: training dataset (x;,y;), / = 1,2,...N; number of additive
weak classifiers M, a family of weak classifiers h(x) € {+1, -1},
trainable on weighted datasets.
@ Initialize observation weights w; = 1/n, i =1,2,...n.
Q form=12..M:
@ fit /" (x) to training data using weights w;
@ compute weighted misclassification rate:

£ Siawillh(x) # y)
m = N
it Wi
if Ey > 0.5 or Eyy = 0: terminate procedure.
compute ap, =In((1— En)/En)
increase all weights, where misclassification with /™(x) was
made:

©00

w; < wie | € {I : hm(xi) # yi}

Output: composite classifier f(x) = sign (25:1 amh’"(x)>
7/30

Boosting - Victor Kitov

Adaboost derivation

Set initial approximation, typically fy(x) = 0.
Apply FSAM for m=1,2,..M:

N
(cm. ") = arg min > L(f1(x7) + cnh™ (),)
em "3
N
= i —Yifm—1(x) go—Cmyih™ ()
arg min > e e

i=1

N

. e y:h™ (s —u: .

= arg min E W;T’e Cmyih (-zl)7 Wlm —e Yifm—1(xi)
Cm,h™ £ "

8/30

Boosting - Victor Kitov

Adaboost derivation

N
S wie @) = Y wpen g Y e

i=1 ™ (x7)=y; i:hm () 7Fy;

e E wi' + em E wy

i-h™(x;)=y; i:hm (i) #y;

N
= e g w4 e m E wi — e m E wi

i:hm () 2 Y i=1 i:hm (x7)y;
=e °m Z w4 (e — e) Z wi
i i:h™ () 2y
Since ¢, > 0 hy(xx) should be found from
N

hm(x;) = arg mfjn Z wi'l[h(x;) # yi]

9720

Boosting - Victor Kitov

Adaboost derivation
Denote F(cm) = > 7y w exp(—cmyih™(x;)). Then

OF (¢cm)
ocm

_ Z wile om 4 Z wiem =0

i-h™(x;)=y; i:h™(x;)#y;

N
= — Z W[{”efcmyihm(xf)yl.hm(xl-) = 0
i=1

m

ezcm . Zi:hm(x/):y; Wf
= S e

b (i) Ay

1 (S w0) /(W) 1 1—Ey 1

Cm = — = —1In Oém,
2 (Zi:h"’(x,-);éy,- w{n> / (27:1 Wlm) 2 Em 2
Sl WL (x7) # yi)

N m
Zi:1 Wi 10/30

Em:

Boosting - Victor Kitov

Adaboost derivation
Weights recalculation:

wl'."+1 9 @=Yifn(xi) _ @=Yifm—1(x1) g=Yicmh™ (x;)
Noting that —y;A™(x;) = 2I[h"(x;) # yi] — 1, we can rewrite:
w1 — @ Yifm—1(xi) g€m (L[N (21)Fyi]=1) —

i
= wle2enll"(x)Zylg=cm o wme2emllh"(x)ZY] — \ymgamllh” (xi)7y]

Comments:

@ Common constant e “m is removed because we normalize
weights: wi” < w["/> . w].

° W77+1 = w/" for correctly classified objects by hn(x).

° wlf"+1 = w"e® for incorrectly classified objects by hp,(x).
@ so later classifiers will pay more attention to them

11/30

Boosting - Victor Kitov
Gradient boosting

Table of Contents

@ Gradient boosting

12/30

Boosting - Victor Kitov
Gradient boosting

Motivation

@ Problem: For general loss function L FSAM cannot be solved
explicitly

@ Analogy with function minimization: when we can’t find
optimum explicitly we use numerical methods

@ Gradient boosting: numerical method for iterative loss
minimization

13/30

Boosting - Victor Kitov
Gradient boosting

Gradient descent algorithm

F(w) — min, weRV
w

Gradient descend algorithm:

INPUT:
n-parameter, controlling the speed of convergence
M-number of iterations

ALGORITHM:
initialize w
for m=1,2,.M:
Aw — OF (w)
ow
w=w—nAw

14/30

Boosting - Victor Kitov
Gradient boosting

Modified gradient descent algorithm

INPUT:
M-number of iterations

ALGORITHM:

initialize w

for m=1,2,..M:
Aw — 27
¢ = argminc F(w — cAw)
w=w-—c"Aw

15/30

Boosting - Victor Kitov
Gradient boosting

Gradient boosting

e Now consider F (f(x1),...f(xn)) = Z,’:; L (f(xn),yn)

@ Gradient descent performs pointwise optimization, but we
need generalization, so we optimize in space of functions.

@ Gradient boosting implements modified gradient descent in
function space:

o find z; = — 8Lry)|r m=1(x)

o fit base learner h,(x) to {(Jr:;,z,-)}f\/:1

16 /30

Boosting - Victor Kitov
Gradient boosting
Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)

and the number M of successive additive approximations.
@ Fit initial approximation fy(x) (might be taken fy(x) = 0)

17/30

Boosting - Victor Kitov
Gradient boosting
Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.

@ Fit initial approximation fy(x) (might be taken fy(x) = 0)
©Q Foreachstepm=1,2,..M:

17/30

Boosting - Victor Kitov
Gradient boosting

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.

@ Fit initial approximation fy(x) (might be taken fy(x) = 0)

©Q Foreachstepm=1,2,..M:

_— oL
@ calculate derivatives z; = 'y lr—m1(x))

17/30

Boosting - Victor Kitov
Gradient boosting

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit initial approximation fy(x) (might be taken fy(x) = 0)
©Q Foreachstepm=1,2,..M:
@ calculate derivatives z; = —aLgr’y) lr—m1(x))
@ fit h, to {(x;,2;)}Y,, for example by solving

N

Z(hm(x,,) - z,,)2 — mhlmn

n=1

17/30

Boosting - Victor Kitov
Gradient boosting

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit initial approximation fy(x) (might be taken fy(x) = 0)
©Q Foreachstepm=1,2,..M:
@ calculate derivatives z; = —aLgr’y) lr—m1(x))
@ fit h, to {(x;,2;)}Y,, for example by solving

N

Z(hm(x,,) - z,,)2 — mhlmn

n=1

© solve univariate optimization problem:

N
> L (fm1(xi) + Cmhm(2i), 4i) — min
o cm€ERY

17/30

Boosting - Victor Kitov
Gradient boosting

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit initial approximation fy(x) (might be taken fy(x) = 0)
©Q Foreachstepm=1,2,..M:
@ calculate derivatives z; = —aLgr’y) lr—m1(x))
@ fit h, to {(x;,2;)}Y,, for example by solving

N

Z(hm(x,,) - z,,)2 — mhlmn

n=1

© solve univariate optimization problem:

N
> L (fm1(xi) + Cmhm(2i), 4i) — min
o cm€ERY

O set (X)) = fp_1(x) + cmbhm(X)

17/30

Boosting - Victor Kitov
Gradient boosting

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit initial approximation fy(x) (might be taken fy(x) = 0)
©Q Foreachstepm=1,2,..M:
@ calculate derivatives z; = —aLgr’y) lr—m1(x))
@ fit h, to {(x;,2;)}Y,, for example by solving

N

Z(hm(x,,) - z,,)2 — mhlmn

n=1

© solve univariate optimization problem:

N
> L (fm1(xi) + Cmhm(2i), 4i) — min
o cm€ERY

O set (X)) = fp_1(x) + cmbhm(X)
Output: approximation function fy(x) = fo(x) + SM L Cnhim()

Boosting - Victor Kitov
Gradient boosting: examples

In gradient boosting

ZN: (hm(xn) - <_6L(8rr’y)|r:fm—1(xn)>>2 ~ min

n=1 "
Specific cases:
1 oL
oL=3(r—yf=> -G =-(-y=@U-1
e hp(x) is fitted to compensate regression errors (y — f—1(x))
0, ry>0
o L=[-ry,=>-L=4"
o hp(x) is fitted to yl[f(x)y < 0]
— — oL - —
oL=m(l+e)=> %o oo L
o hp(x) is fitted to yp (—y|x) because for log-loss

p(ylx) = ﬁ
o p(—y|x) is probability of error on (x,y) pair

18/30

Boosting - Victor Kitov
Gradient boosting of trees
Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.

@ Fit constant initial approximation fy(x):
_ NN
fo(x) = argmin, 3 04 L(, i)

19/30

Boosting - Victor Kitov
Gradient boosting of trees

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit constant initial approximation fy(x):
_ ; N
fo(x) = argmin, > " 4 L(7, yi)
©Q Foreachstepm=1,2,..M:

19/30

Boosting - Victor Kitov
Gradient boosting of trees

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit constant initial approximation fy(x):
_ ; N
fo(x) = argmin, > " 4 L(7, yi)
©Q Foreachstepm=1,2,..M:
oL

@ calculate derivatives z; = — é’r’y) lr=m=1(z)

19/30

Boosting - Victor Kitov
Gradient boosting of trees

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit constant initial approximation fy(x):
fo(x) = argmin, 11 L(v, 47)
©Q Foreachstepm=1,2,..M:
@ calculate derivatives z; = —8Lgr”~’) lr=m=1(z)
@ fit regression tree A" on {(x;,z;)}"_, with some loss function,
get leaf regions {R)n j";r

19/30

Boosting - Victor Kitov
Gradient boosting of trees

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit constant initial approximation fy(x):
_ ; N
fo(x) = argmin, > " 4 L(7, yi)
©Q Foreachstepm=1,2,..M:

- L
O calculate derivatives z; = —2 é’r’y) lr=m=1(z)

@ fit regression tree A" on {(x;,z;)}"_, with some loss function,
. I
get leaf regions {R)n yiay
@ for each terminal region R, j = 1,2, ...J, solve univariate
optimization problem:

Ym = argmin 3 L(fn1(xi) + 7,)

Xi €ERjm

19/30

Boosting - Victor Kitov
Gradient boosting

Gradient boosting of trees

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit constant initial approximation fy(x):
_ ; N
fo(x) = argmin, > " 4 L(7, yi)
©Q Foreachstepm=1,2,..M:

(1)
(2]

(5]

- L
calculate derivatives z; = —2 é’r’y) lr=m=1(z)

fit regression tree h™ on {(x;,z;)}, with some loss function,
get leaf regions {R)n j";r

for each terminal region R, j = 1,2, ...J, solve univariate
optimization problem:

Ym = argmin 3 L(fn1(xi) + 7,)

Xi €ERjm

update f,(x) = fp_1(x) + ZIJL Yiml[x € Rjm]

19/30

Boosting - Victor Kitov
Gradient boosting

Gradient boosting of trees

Input: training dataset (x;,y;), / = 1,2, ...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit constant initial approximation fy(x):
_ ; N
fo(x) = argmin, > " 4 L(7, yi)
©Q Foreachstepm=1,2,..M:

(1)
(2]

(5]

()

- L
calculate derivatives z; = — 2£Y) lr=m=1(z)

or
fit regression tree h™ on {(x;,z;)}, with some loss function,

get leaf regions {R)n j";r
for each terminal region R, j = 1,2, ...J, solve univariate
optimization problem:

Ym = argmin 3 L(fn1(xi) + 7,)

Xi €ERjm

update f,(x) = fp_1(x) + ZIJL Yiml[x € Rjm]

Output: approximation function fj(x)

19/30

Boosting - Victor Kitov
Gradient boosting

Linear loss function approximation

Consider sample (x,y).

L(f(x) + h(x), y) = L(f(x),y) + h(x) 8L((9r,’y) o)

=> h(x) should be fitted to _W

20/30

Boosting - Victor Kitov
Gradient boosting

Newton method of optimization

@ Suppose we want F(w) — min,,
@ Let w* = argmin,, F(w)
@ Then F/(w*) =0
@ Taylor expansion of F/(w) around w to w*:
FI(w) = 0 = F/(w) + F"(w)(w" —) +o{|w — w"])

@ It follows that
1 -1
wh—w = — [F (w)} F'(w) +o(||jw — w*||)
@ lterative scheme for minimization:

W w— {Fﬂ(w)} - F'(w)

o it is scaled gradient descent

o speed of convergence faster (uses quadratic approximation in
Taylor expansion)

e converges in one step for guadratic F(w).

Boosting - Victor Kitov
Gradient boosting

Quadratic loss function approximation

L(f(x) + h(x), y) =

oL(r,y 1 92L(r,y
L(r(x),9) + () PO Ty THEA
r r=f(x) r r=f(x)
, OL(r.9) 2
1 0°L(r,y o |—f
3 B(rz) h(x) + Ly r=fx) + const(h(x))
r=ftz) Ti r=f(x)
BLg,y)
=> h(x) should be fitted to —H with
8V}
or? r=f(x)
H aZL(ray)
weight —5 —t(z)

22/30

Boosting - Victor Kitov
Example: LogitBoost
Binary classification: y € {+1,—1}
Assumption:

1

p(ylx) = 1T e v@ (1

Properties:

p(ylx) € [0,1], p(+1]x) + p(—1|x) =1
Function fitting done with maximum likelihood:

N
p(Y1X) = [[p(yilx;) — max

i=1

N N
—) — i —yf(x)
f=arg m;axz;lnp(y,]x,) arg mflnz;lnﬂ +e)
1= 1=

=> loss function is L(f(x),y) = In(1 + e ¥(%)),

23/30

Boosting - Victor Kitov
Example: LogitBoost

L(r,y) = In(1 + &™), so

OL(ry) _e*(-y) _ __y
or 14+evr 14 e
PL(r.y) _ —ye'y e¥ B 1
o’ (1yewr)? (1+er)(1+er) (1+ev)(1+e¥)
aL(r, _
It follows, that # et —Ypr(z)(—y) and
2
TLED = priay(y) (1 - przy (1))
BLér,y)
=> h(x) should be fitted to —— =" = y (14 e ¥/(*)) with
Y,
L o | i)
weight #‘r:f&) = pf(x)(y) (1 *Pf(x)(y))

¢ is not fitted because h(x) is fitted directly to local optimum under

quadratic approximation.
24/30

Boosting - Victor Kitov
Logitboost algorithm

Input: training dataset (x;,y;), / = 1,2, ...N; number of steps M.
© Fit initial approximation fy(x) (might be taken fy(x) = 0)

25 /30

Boosting - Victor Kitov
Logitboost algorithm

Input: training dataset (x;,y;), / = 1,2, ...N; number of steps M.
© Fit initial approximation fy(x) (might be taken fy(x) = 0)
© For each stepm=1,2,..M:

25 /30

Boosting - Victor Kitov
Logitboost algorithm
Input: training dataset (x;,y;), / = 1,2, ...N; number of steps M.
© Fit initial approximation fy(x) (might be taken fy(x) = 0)

© For each stepm=1,2,..M:
O calculate targets z; = y; (1 + e ¥n—1(%))

25 /30

Boosting - Victor Kitov
Logitboost algorithm

Input: training dataset (x;,y;), / = 1,2, ...N; number of steps M.
© Fit initial approximation fy(x) (might be taken fy(x) = 0)
Q Foreachstepm=1,2,..M:
O calculate targets z; = y; (1 + e ¥n—1(%))

@ calculate weights w; = p;,_()(4) (1 — pr,_,2)(Y))
@ fit h,, by minimization

N
> Wao(hn(Xn) = 25)* — min
n=1 "

25 /30

Boosting - Victor Kitov
Logitboost algorithm

Input: training dataset (x;,y;), / = 1,2, ...N; number of steps M.
© Fit initial approximation fy(x) (might be taken fy(x) = 0)
Q Foreachstepm=1,2,..M:
O calculate targets z; = y; (1 + e ¥n—1(%))

@ calculate weights w; = p;,_()(4) (1 — pr,_,2)(Y))
@ fit h,, by minimization

N
> Wao(hn(Xn) = 25)* — min
n=1 "

0 set fy(x) = fp_1(x) + hn(x)

25 /30

Boosting - Victor Kitov
Logitboost algorithm

Input: training dataset (x;,y;), / = 1,2, ...N; number of steps M.
© Fit initial approximation fy(x) (might be taken fy(x) = 0)
Q Foreachstepm=1,2,..M:
O calculate targets z; = y; (1 + e ¥n—1(%))

@ calculate weights w; = p;,_()(4) (1 — pr,_,2)(Y))
@ fit h,, by minimization

N
> Wao(hn(Xn) = 25)* — min
n=1 "

0 set fy(x) = fp_1(x) + hn(x)
Output:
@ approximation function fy(x) = fo(x) + Z,’Z:1 hm(x)
o classifier y = sign(fu(x))
@ class probabilities p(y|x) = Hejw
25 /30

Boosting - Victor Kitov
Gradient boosting

Quadratic loss function approximation - discrete h(x)

ZL(f(x;) + h(x;), yi) =

r=Ff(x;)

L(r,y;)
h 2 5
+Z ch(x;)) o2

1, 0% u)
- 2 or?

St) + X o) M
+

S LleC) + S one =5 :

ZL (), 41) — CZy,pf(x, —yh(x;) + c pr(x, (07) (1= Pr(zy (W)
(2)
=> h(x) should be fitted to y; with weights equal to probability of
error pe(z)(—yi)-
c is the minimizer of (2) and equal to
&= Z,‘ YiPr(x;) (—yi)h(xi)
i Pr) (i) (1= Pr(z) (i)

8L r7yl)

r=Ff(x;)

26/30

Boosting - Victor Kitov
Gradient boosting

Modification of boosting for trees

@ Compared to first method of gradient boosting, boosting of
regression trees finds additive coefficients individually for
each terminal region R;;, not globally for the whole classifier
h"(x).

@ This is done to increase accuracy: forward stagewise
algorithm cannot be applied to find R, but it can be applied
to find +;,, because second task is solvable for arbitrary L.

@ Max leaves J

e interaction between no more than / — 1 terms

o usually 4 <J <8

e M controls underfitting-overfitting tradeoff and selected using
validation set

27/30

Boosting - Victor Kitov
Gradient boosting

Shrinkage & subsampling

@ Shrinkage of general GB, step (d):
() = f—1(x) + vCmhm(x)
@ Shrinkage of trees GB, step (d):

Im
Fn(Z) = fn—1(X) + v >_ Yjml[x € Rjm]
Jj=1

o Comments:
e v e (0,1
ovl)=— M1
@ Subsampling

@ increases speed of fitting
@ may increase accuracy

28/30

Boosting - Victor Kitov
Gradient boosting

Case of C > 3 classes

@ Can fit C independent boostings (one vs. all scheme)
e Y = arg maxy fmy(x)
@ Alternatively can optimize multivariate
L(f(x),y) = —Inp(y|x)
@ using linear or quadratic approximation

e for quadratic approximation need to invert g—:zF(r, Y) .
r=f(x
Can use diagonal approximation.

29/30

Boosting - Victor Kitov
Gradient boosting

Types of boosting

@ Loss function F:
o F(|f(x) — y|) - regression
o —Inp(ylx) or F(y - score(y = +1|x)) - binary classification
o —Inp(ylx) - multiclass classification
@ Optimization
e analytical (AdaBoost)
e gradient based
e based on quadratic approximation
@ Base learners
e continious
o discrete
o Classification
e binary
e multiclass

o Extensions: shrinkage, subsampling
30/30

	Gradient boosting

