Boosting

Victor Kitov

February 25, 2016

Motivation for ensembles

- Consider M classifiers $f_1(x),...f_M(x)$, performing binary classification.
- Let $\xi_1,...\xi_M$ denote indicators of mistakes by $f_1,...f_M$ on particular observation x
- Suppose $\xi_1,...\xi_M$ are independent binomial variables with $P(\xi_i=1)=p$
- Then $\mathbb{E}\xi_i = \rho$, $Var[\xi_i] = \rho(1-\rho)$
- Consider F(x) be aggregating classifier, assigning x to the class with maximum votes among $f_1(x), ... f_M(x)$.
- Consider

$$\eta = \frac{\xi_1 + \dots \xi_M}{M}$$

- Probability of mistake = probability that majority of $\xi_1, ... \xi_M$ are ones = $P(\eta > 0.5)$.
- $P(\eta > 0.5) \to 0$ as $M \to \infty$ because $\mathbb{E}\eta = p$, $Var[\eta] = \frac{p(1-p)}{M}$.

Linear ensembles

Regression:

$$F(x) = f_0(x) + c_1 f_1(x) + ... + c_M f_M(x)$$

Classification:

$$score(y|x) = f_0(x) + c_1f_1(x) + ... + c_Mf_M(x)$$

- Notation: $f_1(x), ... f_M(x)$ are called *base learners, weak learners, base models*.
- Too expensive to optimize $f_0(x), f_1(x), ... f_M(x)$ and $c_1, ... c_M$ jointly for large M.
- Idea: optimize $f_0(x)$ and then each pair $(f_m(x), c_m)$ greedily.
- After ensemble is built we can fine-tune $c_1, ... c_M$ by fitting features $f_0(x), f_1(x), ... f_M(x)$ with linear regression/classifier.

Forward stagewise additive modeling (FSAM)

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function L(f, y), general form of "base learner" $h(x|\gamma)$ (dependent from parameter γ) and the number M of successive additive approximations.

- Fit initial approximation $f_0(x) = \arg\min_f \sum_{i=1}^N L(f(x_i), y_i)$
- ② For m = 1, 2, ...M:
 - find next best classifier

$$(c_m, h_m) = \arg\min_{h_m, c_m} \sum_{i=1}^{N} L(f_{m-1}(x_i) + c_m h_m(x_i), y_i)$$

set

$$f_m(x) = f_{m-1}(x) + c_m h_m(x)$$

Output: approximation function $f_M(x) = f_0(x) + \sum_{i=1}^{M} c_i h_m(x)$

Comments on FSAM

- Number of steps M should be determined by performance on validation set.
- Step 1 need not be solved accurately, since its mistakes are expected to be corrected by future base learners.
 - we can take $f_0(x) = \arg\min_{\beta \in \mathbb{R}} \sum_{i=1}^N L(\beta, y_i)$ or simply $f_0(x) \equiv 0$.
- By similar reasoning there is no need to solve 2.1 accurately
 - typically very simple base learners are used such as trees of depth=1,2,3.
- For some loss functions, such as $L(y, f(x)) = e^{-yf(x)}$ we can solve FSAM explicitly.
- For general loss functions gradient boosting scheme should be used.

Adaboost (discrete version): assumptions

- binary classification task $y \in \{+1, -1\}$
- family of base classifiers $h(x) = h(x|\gamma)$ where γ is some fitted parametrization.
- $h(x) \in \{+1, -1\}$
- classification is performed with

$$\hat{y} = sign\{f_0(x) + c_1f_1(x) + ... + c_Mf_M(x)\}$$

- optimized loss is $L(y, f(x)) = e^{-yf(x)}$
- FSAM is applied

Adaboost (discrete version): algorithm

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of additive weak classifiers M, a family of weak classifiers $h(x) \in \{+1, -1\}$, trainable on weighted datasets.

- Initialize observation weights $w_i = 1/n$, i = 1, 2, ...n.
- ② for m = 1, 2, ...M:
 - fit $h^m(x)$ to training data using weights w_i
 - 2 compute weighted misclassification rate:

$$E_m = \frac{\sum_{i=1}^N w_i \mathbb{I}[h^m(x) \neq y_i]}{\sum_{i=1}^N w_i}$$

- 3 if $E_M > 0.5$ or $E_M = 0$: terminate procedure.
- ompute $\alpha_m = \ln ((1 E_m)/E_m)$
- \odot increase all weights, where misclassification with $h^m(x)$ was made:

$$\mathbf{w}_i \leftarrow \mathbf{w}_i \mathbf{e}^{\alpha_m}, i \in \{i : h^m(\mathbf{x}_i) \neq \mathbf{y}_i\}$$

Output: composite classifier $f(x) = \text{sign}\left(\sum_{m=1}^{M} \alpha_m h^m(x)\right)$

Set initial approximation, typically $f_0(x) \equiv 0$. Apply FSAM for m = 1, 2, ...M:

$$(c_m, h^m) = \arg\min_{c_m, h^m} \sum_{i=1}^N L(f_{m-1}(x_i) + c_m h^m(x), y_i)$$

$$= \arg\min_{c_m, h^m} \sum_{i=1}^N e^{-y_i f_{m-1}(x_i)} e^{-c_m y_i h^m(x)}$$

$$= \arg\min_{c_m, h^m} \sum_{i=1}^N w_i^m e^{-c_m y_i h^m(x_i)}, \quad w_i^m = e^{-y_i f_{m-1}(x_i)}$$

$$\sum_{i=1}^{N} w_{i}^{m} e^{-c_{m}y_{i}h^{m}(x_{i})} = \sum_{i:h^{m}(x_{i})=y_{i}} w_{i}^{m} e^{-c_{m}} + \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m} e^{c_{m}}$$

$$= e^{-c_{m}} \sum_{i:h^{m}(x_{i})=y_{i}} w_{i}^{m} + e^{c_{m}} \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}$$

$$= e^{c_{m}} \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m} + e^{-c_{m}} \sum_{i=1}^{N} w_{i}^{m} - e^{-c_{m}} \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}$$

$$= e^{-c_{m}} \sum_{i} w_{i}^{m} + (e^{c_{m}} - e^{-c_{m}}) \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}$$

Since $c_m \geq 0$ $h_m(x)$ should be found from

$$h_m(x_i) = \arg\min_{h} \sum_{0 \neq i \neq 1}^{N} w_i^m \mathbb{I}[h(x_i) \neq y_i]$$

Denote $F(c_m) = \sum_{i=1}^n w_i^m \exp(-c_m y_i h^m(x_i))$. Then

$$\frac{\partial F(c_m)}{\partial c_m} = -\sum_{i=1}^{N} w_i^m e^{-c_m y_i h^m(x_i)} y_i h^m(x_i) = 0$$

$$-\sum_{i:h^m(x_i)=y_i} w_i^m e^{-c_m} + \sum_{i:h^m(x_i)\neq y_i} w_i^m e^{c_m} = 0$$

$$e^{2c_m} = \frac{\sum_{i:h^m(x_i)=y_i} w_i^m}{\sum_{i:h^m(x_i)\neq y_i} w_i^m}$$

$$c_{m} = \frac{1}{2} \ln \frac{\left(\sum_{i:h^{m}(x_{i})=y_{i}} w_{i}^{m}\right) / \left(\sum_{i=1}^{n} w_{i}^{m}\right)}{\left(\sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}\right) / \left(\sum_{i=1}^{n} w_{i}^{m}\right)} = \frac{1}{2} \ln \frac{1 - E_{m}}{E_{m}} = \frac{1}{2} \alpha_{m},$$

$$E_{m} = \frac{\sum_{i=1}^{N} w_{i}^{m} \mathbb{I}[h^{m}(x_{i}) \neq y_{i}]}{\sum_{i=1}^{N} w_{i}^{m}}$$

Weights recalculation:

$$\mathbf{w}_{i}^{m+1} \stackrel{df}{=} \mathbf{e}^{-y_{i}f_{m}(x_{i})} = \mathbf{e}^{-y_{i}f_{m-1}(x_{i})}\mathbf{e}^{-y_{i}c_{m}h^{m}(x_{i})}$$

Noting that $-y_ih^m(x_i) = 2\mathbb{I}[h^m(x_i) \neq y_i] - 1$, we can rewrite:

$$w_{i}^{m+1} = e^{-y_{i}f_{m-1}(x_{i})}e^{c_{m}(2\mathbb{I}[h^{m}(x_{i})\neq y_{i}]-1)} =$$

$$= w_{i}^{m}e^{2c_{m}\mathbb{I}[h^{m}(x_{i})\neq y_{i}]}e^{-c_{m}} \propto w_{i}^{m}e^{2c_{m}\mathbb{I}[h^{m}(x_{i})\neq y_{i}]} = w_{i}^{m}e^{\alpha_{m}\mathbb{I}[h^{m}(x_{i})\neq y_{i}]}$$

Comments:

- Common constant e^{-c_m} is removed because we normalize weights: $w_i^m \leftarrow w_i^m / \sum_i w_i^m$.
- $w_i^{m+1} = w_i^m$ for correctly classified objects by $h_m(x)$.
- $w_i^{m+1} = w_i^m e^{\alpha_m}$ for incorrectly classified objects by $h_m(x)$.
 - so later classifiers will pay more attention to them

Table of Contents

Gradient boosting

Motivation

- Problem: For general loss function L FSAM cannot be solved explicitly
- Analogy with function minimization: when we can't find optimum explicitly we use numerical methods
- Gradient boosting: numerical method for iterative loss minimization

Gradient descent algorithm

$$F(w) \to \min_{w}, \quad w \in \mathbb{R}^N$$

Gradient descend algorithm:

INPUT:

 $\eta\text{-parameter, controlling the speed of convergence }\textbf{\textit{M}}\text{-number of iterations}$

ALGORITHM:

initialize
$$w$$
 for $m = 1, 2, ...M$:

$$\Delta w = \frac{\partial F(w)}{\partial w}$$
$$w = w - \eta \Delta w$$

Modified gradient descent algorithm

```
INPUT: 

M-number of iterations 

ALGORITHM: initialize w for m=1,2,...M: \Delta w = \frac{\partial F(w)}{\partial w} c^* = \operatorname{arg\,min}_c F(w-c\Delta w) w = w-c^*\Delta w
```

- Now consider $F(f(x_1), ... f(x_N)) = \sum_{n=1}^{N} L(f(x_n), y_n)$
- Gradient descent performs pointwise optimization, but we need generalization, so we optimize in space of functions.
- Gradient boosting implements modified gradient descent in function space:
 - find $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - fit base learner $h_m(x)$ to $\{(x_i, z_i)\}_{i=1}^N$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function L(f, y) and the number M of successive additive approximations.

• Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=r^{m-1}(x_i)}$

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^N (h_m(x_n)-z_n)^2 \to \min_{h_m}$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function L(f, y) and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - 2 fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^N (h_m(x_n)-z_n)^2 \to \min_{h_m}$$

3 solve univariate optimization problem:

$$\sum_{i=1}^{N} L\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right)
ightarrow \min_{c_m \in \mathbb{R}_+}$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function L(f, y) and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^N (h_m(x_n)-z_n)^2 \to \min_{h_m}$$

solve univariate optimization problem:

$$\sum_{i=1}^{N} L\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

$$ext{1} ext{set } f_m(x) = f_{m-1}(x) + c_m h_m(x)$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function L(f, y) and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^N (h_m(x_n)-z_n)^2 \to \min_{h_m}$$

3 solve univariate optimization problem:

$$\sum_{i=1}^{N} L\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

Output: approximation function $f_{m}(x) = f_{0}(x) + \sum_{m=1}^{M} c_{m}h_{m}(x)$

Gradient boosting: examples

In gradient boosting

$$\sum_{n=1}^{N} \left(h_m(x_n) - \left(-\frac{\partial L(r,y)}{\partial r} |_{r=f^{m-1}(x_n)} \right) \right)^2 \to \min_{h_m}$$

Specific cases:

•
$$L = \frac{1}{2}(r-y)^2 \implies -\frac{\partial L}{\partial r} = -(r-y) = (y-r)$$

• $h_m(x)$ is fitted to compensate regression errors $(y - f_{m-1}(x))$

•
$$L = [-ry]_+ \Rightarrow -\frac{\partial L}{\partial r} = \begin{cases} 0, & ry > 0 \\ y, & ry < 0 \end{cases}$$

•
$$h_m(x)$$
 is fitted to $y\mathbb{I}[f(x)y<0]$

•
$$L = \ln (1 + e^{-ry}) = -\frac{\partial L}{\partial r} = -\frac{-y}{1 + e^{-ry}} e^{-ry} = \frac{y}{1 + e^{ry}}$$

- $h_m(x)$ is fitted to yp(-y|x) because for log-loss $p(y|x) = \frac{1}{1+a^{-f(x)y}}$
- p(-y|x) is probability of error on (x,y) pair

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function L(f, y) and the number M of successive additive approximations.

• Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(\gamma, y_i)$

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(\gamma, y_i)$
- **2** For each step m = 1, 2, ...M:

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(\gamma, y_i)$
- **2** For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(\gamma, y_i)$
- **2** For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=r^{m-1}(x)}$
 - ② fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}\Big|_{\substack{r=f^{m-1}(x)}}$
 - ② fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{im}\}_{i=1}^{J_m}$.
 - § for each terminal region R_{jm} , $j = 1, 2, ...J_m$ solve univariate optimization problem:

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} L(f_{m-1}(x_i) + \gamma, y_i)$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function L(f, y) and the number M of successive additive approximations.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=r^{m-1}(x)}$
 - ② fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{im}\}_{i=1}^{J_m}$.
 - for each terminal region R_{jm} , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_{\mathit{jm}} = \arg\min_{\gamma} \sum_{x_i \in R_{\mathit{im}}} L(f_{\mathit{m}-1}(x_i) + \gamma, \, y_i)$$

① update $f_m(x) = f_{m-1}(x) + \sum_{i=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function L(f, y) and the number M of successive additive approximations.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - calculate derivatives $z_i = -\frac{\partial L(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - ② fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.
 - for each terminal region R_{jm} , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_{\mathit{jm}} = \arg\min_{\gamma} \sum_{x_i \in R_{\mathit{im}}} L(f_{\mathit{m}-1}(x_i) + \gamma, \, y_i)$$

$$ullet$$
 update $f_m(x) = f_{m-1}(x) + \sum_{i=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$

Output: approximation function $f_M(x)$

Linear loss function approximation

Consider sample (x, y).

$$L(f(x) + h(x), y) \approx L(f(x), y) + h(x) \left. \frac{\partial L(r, y)}{\partial r} \right|_{r = f(x)}$$
 => $h(x)$ should be fitted to $-\frac{\partial L(r, y)}{\partial r}$

Newton method of optimization

- Suppose we want $F(w) \rightarrow \min_{w}$
- Let $w^* = \arg\min_w F(w)$
- Then $F'(w^*) = 0$
- Taylor expansion of F'(w) around w to w^* :

$$F'(w^*) = 0 = F'(w) + F''(w)(w^* - w) + o(\|w - w^*\|)$$

It follows that

$$w^* - w = -\left[F''(w)\right]^{-1}F'(w) + o(\|w - w^*\|)$$

• Iterative scheme for minimization:

$$w \leftarrow w - \left[F''(w)\right]^{-1} F'(w)$$

- it is scaled gradient descent
- speed of convergence faster (uses quadratic approximation in Taylor expansion)
- converges in one step for guadratic F(w).

Quadratic loss function approximation

$$L(f(x) + h(x), y) = L(f(x), y) + h(x) \frac{\partial L(r, y)}{\partial r} \Big|_{r = f(x)} + \frac{1}{2} (h(x))^2 \frac{\partial^2 L(r, y)}{\partial r^2} \Big|_{r = f(x)} = \frac{1}{2} \frac{\partial^2 L(r, y)}{\partial r^2} \Big|_{r = f(x)} \left(h(x) + \frac{\frac{\partial L(r, y)}{\partial r} \Big|_{r = f(x)}}{\frac{\partial^2 L(r, y)}{\partial r^2} \Big|_{r = f(x)}} \right)^2 + const(h(x))$$

$$=> h(x) \text{ should be fitted to } -\frac{\frac{\partial L(r, y)}{\partial r} \Big|_{r = f(x)}}{\frac{\partial^2 L(r, y)}{\partial r^2} \Big|_{r = f(x)}} \text{ with }$$
weight $\frac{\partial^2 L(r, y)}{\partial r^2} \Big|_{r = f(x)}$

Example: LogitBoost

Binary classification: $y \in \{+1, -1\}$

Assumption:

$$\rho(y|x) = \frac{1}{1 + e^{-yf(x)}} \tag{1}$$

Properties:

$$p(y|x) \in [0,1], p(+1|x) + p(-1|x) = 1$$

Function fitting done with maximum likelihood:

$$\rho(Y|X) = \prod_{i=1}^{N} \rho(y_i|x_i) \to \max_{f}$$

$$f = \arg\max_f \sum_{i=1}^N \ln p(y_i|x_i) = \arg\min_f \sum_{i=1}^N \ln(1 + \mathrm{e}^{-yf(x)})$$

=> loss function is
$$L(f(x), y) = \ln(1 + e^{-yf(x)})$$
.

Example: LogitBoost

$$L(r,y)=\ln(1+e^{-yr})$$
, so $rac{\partial L(r,y)}{\partial r}=rac{e^{-yr}(-y)}{1+e^{-yr}}=-rac{y}{1+e^{yr}}$

$$\frac{\partial^2 L(r,y)}{\partial r^2} = -\frac{-y e^{yr} y}{\left(1 + e^{yr}\right)^2} = \frac{e^{yr}}{\left(1 + e^{yr}\right)\left(1 + e^{yr}\right)} = \frac{1}{\left(1 + e^{-yr}\right)\left(1 + e^{yr}\right)}$$

It follows, that $\frac{\partial L(r,y)}{\partial r}\Big|_{r=f(x)} = -yp_{f(x)}(-y)$ and

$$\frac{\partial^2 L(r,y)}{\partial r^2} = \rho_{f(x)}(y) \left(1 - \rho_{f(x)}(y)\right)$$

=>
$$h(x)$$
 should be fitted to $-\frac{\frac{\partial L(r,y)}{\partial r}\Big|_{r=f(x)}}{\frac{\partial^2 L(r,y)}{\partial r^2}\Big|_{x=f(x)}} = y\left(1 + e^{-yf(x)}\right)$ with

weight
$$\frac{\partial^2 L(r,y)}{\partial r^2}\Big|_{r=f(x)} = p_{f(x)}(y) \left(1 - p_{f(x)}(y)\right)$$

 c_m is not fitted because h(x) is fitted directly to local optimum under quadratic approximation.

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of steps M.

• Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - calculate targets $z_i = y_i \left(1 + e^{-yf_{m-1}(x_i)}\right)$

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - calculate targets $z_i = y_i \left(1 + e^{-yf_{m-1}(x_i)}\right)$
 - 2 calculate weights $w_i = \rho_{f_{m-1}(x)}(y) \left(1 \rho_{f_{m-1}(x)}(y)\right)$
 - \odot fit h_m by minimization

$$\sum_{n=1}^N w_n (h_m(x_n) - z_n)^2
ightarrow \min_{h_m}$$

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - calculate targets $z_i = y_i \left(1 + e^{-yf_{m-1}(x_i)}\right)$
 - 2 calculate weights $w_i = \rho_{f_{m-1}(x)}(y) \left(1 \rho_{f_{m-1}(x)}(y)\right)$
 - \bullet fit h_m by minimization

$$\sum_{n=1}^N w_n (h_m(x_n) - z_n)^2 \to \min_{h_m}$$

$$oldsymbol{0}$$
 set $f_m(x) = f_{m-1}(x) + h_m(x)$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of steps M.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- **2** For each step m = 1, 2, ...M:
 - calculate targets $z_i = y_i \left(1 + e^{-yf_{m-1}(x_i)}\right)$
 - 2 calculate weights $w_i = \rho_{f_{m-1}(x)}(y) \left(1 \rho_{f_{m-1}(x)}(y)\right)$
 - \odot fit h_m by minimization

$$\sum_{n=1}^N w_n (h_m(x_n) - z_n)^2 \to \min_{h_m}$$

4 set
$$f_m(x) = f_{m-1}(x) + h_m(x)$$

Output:

- approximation function $f_M(x) = f_0(x) + \sum_{m=1}^M h_m(x)$
- classifier $\hat{y} = sign(f_M(x))$
- class probabilities $p(y|x) = rac{1}{1+e^{-yf_{M}(x)}}$

Quadratic loss function approximation - discrete h(x)

$$\sum_{i} L(f(x_{i}) + h(x_{i}), y_{i}) =$$

$$\sum_{i} L(f(x_{i}), y_{i}) + \sum_{i} ch(x_{i}) \frac{\partial L(r, y_{i})}{\partial r} \Big|_{r=f(x_{i})} + \sum_{i} \frac{1}{2} (ch(x_{i}))^{2} \frac{\partial^{2} L(r, y_{i})}{\partial r^{2}} \Big|_{r=f(x_{i})} =$$

$$\sum_{i} L(f(x_{i}), y_{i}) + \sum_{i} h(x_{i}) c \frac{\partial L(r, y_{i})}{\partial r} \Big|_{r=f(x_{i})} + \sum_{i} \frac{1}{2} c^{2} \frac{\partial^{2} L(r, y_{i})}{\partial r^{2}} \Big|_{r=f(x_{i})} =$$

$$\sum_{i} L(f(x_{i}), y_{i}) - c \sum_{i} y_{i} \rho_{f(x_{i})}(-y_{i}) h(x_{i}) + \frac{1}{2} c^{2} \sum_{i} \rho_{f(x_{i})}(y_{i}) (1 - \rho_{f(x_{i})}(y_{i}))$$
(2)

 $\Rightarrow h(x)$ should be fitted to y_i with weights equal to probability of error $p_{f(x_i)}(-y_i)$.

c is the minimizer of (2) and equal to

$$c^* = \frac{\sum_{i} y_i \rho_{f(x_i)}(-y_i) h(x_i)}{\sum_{i} \rho_{f(x_i)}(y_i) (1 - \rho_{f(x_i)}(y_i))}$$

Modification of boosting for trees

- Compared to first method of gradient boosting, boosting of regression trees finds additive coefficients individually for each terminal region R_{jm} , not globally for the whole classifier $h^m(x)$.
- This is done to increase accuracy: forward stagewise algorithm cannot be applied to find R_{jm} , but it can be applied to find γ_{jm} , because second task is solvable for arbitrary L.
- Max leaves J
 - interaction between no more than J-1 terms
 - usually $4 \le J \le 8$
 - M controls underfitting-overfitting tradeoff and selected using validation set

Shrinkage & subsampling

Shrinkage of general GB, step (d):

$$f_m(x) = f_{m-1}(x) + \nu c_m h_m(x)$$

Shrinkage of trees GB, step (d):

$$f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$$

- Comments:
 - $\nu \in (0, 1]$
 - ν ↓ ⇒ M ↑
- Subsampling
 - · increases speed of fitting
 - may increase accuracy

Case of $C \ge 3$ classes

- Can fit C independent boostings (one vs. all scheme)
 - $\hat{y} = \arg\max_{y} f_{my}(x)$
- Alternatively can optimize multivariate $L(f(x), y) = -\ln p(y|x)$
 - using linear or quadratic approximation
 - for quadratic approximation need to invert $\frac{\partial^2}{\partial r^2}F(r,y)\Big|_{r=f(x)}$. Can use diagonal approximation.

Types of boosting

- Loss function F:
 - F(|f(x) y|) regression
 - ullet $-\ln p(y|x)$ or $F(y\cdot score(y=+1|x))$ binary classification
 - $-\ln \rho(y|x)$ multiclass classification
- Optimization
 - analytical (AdaBoost)
 - gradient based
 - based on quadratic approximation
- Base learners
 - continious
 - discrete
- Classification
 - binary
 - multiclass
- Extensions: shrinkage, subsampling