Deep Generative Models

Roman Isachenko

Moscow Institute of Physics and Technology

2019

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

1/48

VAE limitations

Poor variational posterior distribution (encoder)

$$q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor probabilistic model (decoder)

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \boldsymbol{\sigma}_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q, \boldsymbol{\theta}) = (?).$$

Importance Sampling

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})}\right] q(\mathbf{z}|\mathbf{x}) d\mathbf{z}$$
$$= \int f(\mathbf{x}, \mathbf{z}) q(\mathbf{z}|\mathbf{x}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z})$$

Here $f(\mathbf{x}, \mathbf{z}) = \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})}$.

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z}) \geq \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \log f(\mathbf{x}, \mathbf{z}) = \\ &= \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})} = \mathcal{L}(q, \boldsymbol{\theta}). \end{split}$$

Could we choose better $f(\mathbf{x}, \mathbf{z})$?

Let
$$f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \theta)}{q(\mathbf{z}_k | \mathbf{x})}$$
.

$$f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \boldsymbol{\theta})}{q(\mathbf{z}_k | \mathbf{x})}$$

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \mathbb{E}_{\mathbf{z}_1,\dots,\mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x},\mathbf{z},\dots,\mathbf{z}_K) \geq \\ &\geq \mathbb{E}_{\mathbf{z}_1,\dots,\mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log f(\mathbf{x},\mathbf{z},\dots,\mathbf{z}_K) = \\ &= \mathbb{E}_{\mathbf{z}_1,\dots,\mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log \left[\frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x},\mathbf{z}_k|\boldsymbol{\theta})}{q(\mathbf{z}_k|\mathbf{x})} \right] = \mathcal{L}_K(q,\boldsymbol{\theta}). \end{split}$$

VAE objective

$$p(\mathbf{x}|m{ heta}) \ge \mathcal{L}(q,m{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log rac{p(\mathbf{x},\mathbf{z}|m{ heta})}{q(\mathbf{z}|\mathbf{x})} o \max_{\phi,m{ heta}}$$
 $\mathcal{L}(q,m{ heta}) = \mathbb{E}_{\mathbf{z}_1,...,\mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \left(rac{1}{K} \sum_{k=1}^K \log rac{p(\mathbf{x},\mathbf{z}_k|m{ heta})}{q(\mathbf{z}_k|\mathbf{x})}
ight) o \max_{q,m{ heta}}.$

IWAE objective

$$\mathcal{L}_{\mathcal{K}}(q, oldsymbol{ heta}) = \mathbb{E}_{\mathsf{z}_1, ..., \mathsf{z}_{\mathcal{K}} \sim q(\mathsf{z}|\mathsf{x})} \log \left(rac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} rac{p(\mathsf{x}, \mathsf{z}_k|oldsymbol{ heta})}{q(\mathsf{z}_k|\mathsf{x})}
ight) o \max_{q, oldsymbol{ heta}}.$$

If K = 1, these objectives coincide.

Theorem

1. log
$$p(\mathbf{x}|\boldsymbol{\theta}) \ge \mathcal{L}_{K}(q, \boldsymbol{\theta}) \ge \mathcal{L}_{M}(q, \boldsymbol{\theta})$$
, for $K \ge M$;
2. log $p(\mathbf{x}|\boldsymbol{\theta}) = \lim_{K \to \infty} \mathcal{L}_{K}(q, \boldsymbol{\theta})$ if $\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})}$ is bounded.

Proof of 1.

$$\begin{split} \mathcal{L}_{\mathcal{K}}(q, \theta) &= \mathbb{E}_{\mathsf{z}_{1}, \dots, \mathsf{z}_{\mathcal{K}}} \log \left(\frac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} \frac{p(\mathsf{x}, \mathsf{z}_{k} | \theta)}{q(\mathsf{z}_{k} | \mathsf{x})} \right) = \\ &= \mathbb{E}_{\mathsf{z}_{1}, \dots, \mathsf{z}_{\mathcal{K}}} \log \mathbb{E}_{k_{1}, \dots, k_{M}} \left(\frac{1}{\mathcal{M}} \sum_{m=1}^{\mathcal{M}} \frac{p(\mathsf{x}, \mathsf{z}_{k_{m}} | \theta)}{q(\mathsf{z}_{k_{m}} | \mathsf{x})} \right) \geq \\ &\geq \mathbb{E}_{\mathsf{z}_{1}, \dots, \mathsf{z}_{\mathcal{K}}} \mathbb{E}_{k_{1}, \dots, k_{m}} \log \left(\frac{1}{\mathcal{M}} \sum_{m=1}^{\mathcal{M}} \frac{p(\mathsf{x}, \mathsf{z}_{k_{m}} | \theta)}{q(\mathsf{z}_{k_{m}} | \mathsf{x})} \right) = \\ &= \mathbb{E}_{\mathsf{z}_{1}, \dots, \mathsf{z}_{\mathcal{M}}} \log \left(\frac{1}{\mathcal{M}} \sum_{m=1}^{\mathcal{M}} \frac{p(\mathsf{x}, \mathsf{z}_{m} | \theta)}{q(\mathsf{z}_{m} | \mathsf{x})} \right) = \mathcal{L}_{\mathcal{M}}(q, \theta) \end{split}$$

Theorem

1.
$$\log p(\mathbf{x}) \ge \mathcal{L}_{\mathcal{K}}(q, \theta) \ge \mathcal{L}_{\mathcal{M}}(q, \theta), \text{ for } \mathcal{K} \ge M;$$

2. $\log p(\mathbf{x}) = \lim_{K \to \infty} \mathcal{L}_{\mathcal{K}}(q, \theta) \text{ if } \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \text{ is bounded.}$

Proof of 2.

Consider r.v.
$$\xi_K = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \theta)}{q(\mathbf{z}_k | \mathbf{x})}$$
.

If summands are bounded, then (from the strong law of large numbers)

$$\xi_{\mathcal{K}} \xrightarrow[\mathcal{K} \to \infty]{a.s.} \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \frac{\rho(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})} = \rho(\mathbf{x}|\boldsymbol{\theta}).$$

Hence $\mathcal{L}_{\mathcal{K}}(q, \theta) = \mathbb{E} \log \xi_{\mathcal{K}}$ converges to $\log p(\mathbf{x}|\theta)$ as $\mathcal{K} \to \infty$.

$$\log p(\mathbf{x}|m{ heta}) \geq \mathcal{L}_{\mathcal{K}}(q,m{ heta}) \geq \mathcal{L}(q,m{ heta})$$

If K > 1 the bound could be tighter.

$$egin{aligned} \mathcal{L}(q,oldsymbol{ heta}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}\lograc{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x})}; \ \mathcal{L}_{K}(q,oldsymbol{ heta}) &= \mathbb{E}_{\mathbf{z}_{1},...,\mathbf{z}_{K}\sim q(\mathbf{z}|\mathbf{x})}\log\left(rac{1}{K}\sum_{k=1}^{K}rac{p(\mathbf{x},\mathbf{z}_{k}|oldsymbol{ heta})}{q(\mathbf{z}_{k}|\mathbf{x})}
ight). \end{aligned}$$

$$\mathcal{L}_1(q,\theta) = \mathcal{L}(q,\theta);$$

$$\mathcal{L}_\infty(q,\theta) = \log p(\mathbf{x}|\theta).$$

Which $q(\mathbf{z}|\mathbf{x})$ gives $\mathcal{L}(q, \theta) = \log p(\mathbf{x}|\theta)$? Which $q(\mathbf{z}|\mathbf{x})$ gives $\mathcal{L}(q, \theta) = \mathcal{L}_{\mathcal{K}}(q, \theta)$?

Theorem The VAE objective is equal to IWAE objective

$$\mathcal{L}(q_{EW}, oldsymbol{ heta}) = \mathcal{L}_{\mathcal{K}}(q, oldsymbol{ heta})$$

for the following variational distribution

$$q_{EW}(\mathbf{z}|\mathbf{x}) = \mathbb{E}_{\mathbf{z}_2, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} q_{IW}(\mathbf{z}|\mathbf{x}, \mathbf{z}_{2:K}),$$

where

$$q_{IW}(\mathbf{z}|\mathbf{x}, \mathbf{z}_{2:K}) = \frac{\frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z}|\mathbf{x})}}{\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathbf{x}, \mathbf{z}_k)}{q(\mathbf{z}_k|\mathbf{x})}} q(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{z})}{\frac{1}{K} \left(\frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z}|\mathbf{x})} + \sum_{k=2}^{K} \frac{p(\mathbf{x}, \mathbf{z}_k)}{q(\mathbf{z}_k|\mathbf{x})}\right)}$$

https://openreview.net/pdf?id=Syw2ZgrFx

Real		Sample $q(z x)$						Sample $q_{EW}(z x)$												
٥	0	0	6	6	0	0	0	0	0	0	0	Ô	Ô	0	Ô	0	Ô	0	0	0
L .	6	6		6	2	6	9	6	6	6	6	6	6	6	6	6	6	6	6	6
7	9	9	9	9	9	9	7	7	9	9	7	7	1	7	7	7	7	7	7	7
1	7	4	1	/	1	/	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	3	2	3	3	6	2	3	3	2	3	2	2	3	2	2	2	2	3	3	2

https://openreview.net/pdf?id=Syw2ZgrFx

How to determine whether all VAE latent variables are informative?

$$A_i = \operatorname{cov}_{\mathbf{x}} ig(\mathbb{E}_{q(z_i | \mathbf{x})}[z_i] ig) > 0.01 \quad \Leftrightarrow \quad z_i ext{ is active}$$

			MN	IST		OMNIGLOT					
		V	ЧE	IW	ΆE	VA	Æ	IW	AE		
# stoch. layers	\underline{k}	NLL	active units	NLL	active units	NLL	active units	NLL	active units		
1	1 5 50	86.76 86.47 86.35	19 20 20	86.76 85.54 84.78	19 22 25	108.11 107.62 107.80	28 28 28	108.11 106.12 104.67	28 34 41		
2	1 5 50	85.33 85.01 84.78	16+5 17+5 17+5	85.33 83.89 82.90	16+5 21+5 26+7	107.58 106.31 106.30	28+4 30+5 30+5	107.56 104.79 103.38	30+5 38+6 44+7		

ELBO interpretations

Evidence minus posterior KL

$$\mathcal{L}(q, \theta) = \log p(\mathbf{X}|\theta) + KL(q(\mathbf{Z}|\mathbf{X})||p(\mathbf{Z}|\mathbf{X}, \theta)).$$

Average negative energy plus entropy

$$\mathcal{L}(q, heta) = \mathbb{E}_{q(\mathsf{Z}|\mathsf{X})} p(\mathsf{X}, \mathsf{Z}| heta) + \mathbb{H}\left[q(\mathsf{Z}|\mathsf{X})
ight].$$

Average term-by-term reconstruction minus KL to prior

$$\mathcal{L}(q, \theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}_i | \mathbf{x}_i)} \log p(\mathbf{x}_i | \mathbf{z}_i, \theta) - \mathcal{K}\mathcal{L}(q(\mathbf{z}_i | \mathbf{x}_i) || p(\mathbf{z}_i)) \right].$$

http://approximateinference.org/accepted/HoffmanJohnson2016.pdf

$$\mathcal{L}(q, \theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}_i | \mathbf{x}_i)} \log p(\mathbf{x}_i | \mathbf{z}_i, \theta) - \mathcal{K}L(q(\mathbf{z}_i | \mathbf{x}_i) || p(\mathbf{z}_i)) \right].$$

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} \mathsf{KL}(q(\mathbf{z}_{i}|\mathbf{x}_{i})||p(\mathbf{z}_{i})) = \mathsf{KL}(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_{q(i,\mathbf{z})}[i,\mathbf{z}],$$

where *i* is treated as random variable:

$$\begin{aligned} q(i,\mathbf{z}) &= q(i)q(\mathbf{z}|i); \quad p(i,\mathbf{z}) = p(i)p(\mathbf{z}); \quad q(i) = p(i) = \frac{1}{n}; \quad q(\mathbf{z}|i) = q(\mathbf{z}|\mathbf{x}_i). \\ q(\mathbf{z}) &= \sum_{i=1}^n q(i,\mathbf{z}) = \frac{1}{n} \sum_{i=1}^n q(\mathbf{z}|\mathbf{x}_i); \quad \mathbb{I}_{q(i,\mathbf{z})}[i,\mathbf{z}] = \mathbb{E}_{q(i,\mathbf{z})} \log \frac{q(i,\mathbf{z})}{q(i)q(\mathbf{z})}. \end{aligned}$$

http://approximate inference.org/accepted/HoffmanJohnson 2016.pdf

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}_{i}|\mathbf{x}_{i})||p(\mathbf{z}_{i})) = KL(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_{q(i,\mathbf{z})}[i,\mathbf{z}].$$

Proof

$$\frac{1}{n}\sum_{i=1}^{n} \mathcal{K}L(q(\mathbf{z}_{i}|\mathbf{x}_{i})||p(\mathbf{z}_{i})) = \sum_{i=1}^{n} \int q(i)q(\mathbf{z}|i)\log\frac{q(\mathbf{z}|i)}{p(\mathbf{z})}d\mathbf{z} =$$

$$= \sum_{i=1}^{n} \int q(i,\mathbf{z})\log\frac{q(i,\mathbf{z})}{p(\mathbf{z})p(i)}d\mathbf{z} = \int \sum_{i=1}^{n} q(i,\mathbf{z})\log\frac{q(\mathbf{z})q(i|\mathbf{z})}{p(\mathbf{z})p(i)}d\mathbf{z} =$$

$$= \int q(\mathbf{z})\log\frac{q(\mathbf{z})}{p(\mathbf{z})}d\mathbf{z} + \int \sum_{i=1}^{n} q(i|\mathbf{z})q(\mathbf{z})\log\frac{q(i|\mathbf{z})}{p(i)}d\mathbf{z} =$$

$$= \mathcal{K}L(q(\mathbf{z})||p(\mathbf{z})) - \mathbb{E}_{q(\mathbf{z})}\mathbb{H}[q(i|\mathbf{z})] + \log N.$$

http://approximateinference.org/accepted/HoffmanJohnson2016.pdf $\langle \Xi \rangle \langle \Xi \rangle \equiv 0$ \Im

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}_{i}|\mathbf{x}_{i})||p(\mathbf{z}_{i})) = KL(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_{q(i,\mathbf{z})}[i,\mathbf{z}].$$

Proof (continued)

$$\frac{1}{n}\sum_{i=1}^{n} \mathcal{KL}(q(\mathbf{z}_{i}|\mathbf{x}_{i})||p(\mathbf{z}_{i})) = \mathcal{KL}(q(\mathbf{z})||p(\mathbf{z})) - \mathbb{E}_{q(\mathbf{z})}\mathbb{H}\left[q(i|\mathbf{z})\right] + \log N$$

$$egin{aligned} \mathbb{I}_{q(i,\mathbf{z})}[i,\mathbf{z}] &= \mathbb{E}_{q(i,\mathbf{z})}\lograc{q(i,\mathbf{z})}{q(i)q(\mathbf{z})} = \mathbb{E}_{q(\mathbf{z})}\mathbb{E}_{q(i|\mathbf{z})}\lograc{q(i|\mathbf{z})}{q(i)q(\mathbf{z})} = \ &= \mathbb{E}_{q(\mathbf{z})}\mathbb{E}_{q(i|\mathbf{z})}\lograc{q(i|\mathbf{z})}{q(i)} = -\mathbb{E}_{q(\mathbf{z})}\mathbb{H}\left[q(i|\mathbf{z})
ight] + \log N. \end{aligned}$$

э

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}_{i}|\mathbf{x}_{i})||p(\mathbf{z}_{i})) = KL(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_{q(i,\mathbf{z})}[i,\mathbf{z}].$$

ELBO revisiting

$$\mathcal{L}(q,\theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}_{i}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}_{i},\theta) - \mathcal{K}L(q(\mathbf{z}_{i}|\mathbf{x}_{i})||p(\mathbf{z}_{i})) \right] =$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}_{i}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}_{i},\theta) - \mathbb{I}_{q(i,\mathbf{z})}[i,\mathbf{z}] - \mathcal{K}L(q(\mathbf{z})||p(\mathbf{z})) =$$

$$= \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}_{i}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}_{i},\theta)}_{\text{Reconstruction loss}} - \underbrace{\left(\log N - \mathbb{E}_{q(\mathbf{z})}\mathbb{H}\left[q(i|\mathbf{z})\right]\right)}_{0 \leq \text{Mutual info} \leq \log N} - \underbrace{\mathcal{K}L(q(\mathbf{z})||p(\mathbf{z}))}_{\text{Marginal KL}}$$

http://approximateinference.org/accepted/HoffmanJohnson2016.pdf < => < => = つへの 16/48

ELBO surgery, 2016 ELBO revisiting

$$\mathcal{L}(q, \theta) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}_{i}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}_{i}, \theta)}_{\text{Reconstruction loss}} - \underbrace{(\log N - \mathbb{E}_{q(\mathbf{z})} \mathbb{H}[q(i|\mathbf{z})])}_{0 \leq \text{Mutual info} \leq \log N} - \underbrace{\mathcal{K}L(q(\mathbf{z})||p(\mathbf{z}))}_{\text{Marginal KL}}$$
$$\mathcal{K}L(q(\mathbf{z})||p(\mathbf{z}) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_{i}).$$

	ELBO	Avg. KL	Mutual info. $\textcircled{2}$	Marg. KL ③
2D latents	-129.63	7.41	7.20	0.21
10D latents	-88.95	19.17	10.82	8.35
20D latents	-87.45	20.2	10.67	9.53

$\log N \approx 11.0021$

 $http://approximate inference.org/accepted/HoffmanJohnson 2016.pdf \quad \text{and } \quad \text{approximate inference} \quad \text{approximate inferenc$

17 / 48

VAE prior

ELBO revisiting

How to choose the optimal $p(\mathbf{z})$?

- ▶ SG: $p(z) = \mathcal{N}(0, I) \Rightarrow$ over-regularization;
- MoG: $p(\mathbf{z}|\boldsymbol{\lambda}) = \frac{1}{K} \sum_{k=1}^{K} \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\sigma}_k^2) \Rightarrow (*), (**);$
- ► $p(\mathbf{z}) = q(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z} | \mathbf{x}_i) \Rightarrow$ overfitting and highly expensive.

(*) https://arxiv.org/abs/1611.02648

(**) https://pdfs.semanticscholar.org/f6fe/5e8e25994c188ba6a124462e2cc55f2c5a67.pdf

Variational Mixture of posteriors

$$p(\mathbf{x}|\boldsymbol{\lambda}) = \frac{1}{K} \sum_{k=1}^{K} q(\mathbf{z}|\mathbf{u}_k),$$

where $\mathbf{u}_1, \dots \mathbf{u}_K$ is trainable preudo-inputs.

- ► Multimodal ⇒ prevents over-regularization;.
- K ≪ n ⇒ prevents from potential overfitting + less expensive to train.
- ► Pseudo-inputs are prior hyperparameters ⇒ connection to the Empirical Bayes.

Do we equally need the multimodal prior?

Is it beneficial to couple the prior with the variational posterior or MoG is enough?

Model	LL
VAE $(L = 1) + NF$ [32]	-85.10
VAE $(L = 2)$ [6]	-87.86
IWAE $(L=2)$ [6]	-85.32
HVAE (L = 2) + SG	-85.89
HVAE (L = 2) + MOG	-85.07
HVAE $(L = 2)$ + VAMPPRIOR data	-85.71
HVAE $(L = 2)$ + VAMPPRIOR	-83.19
AVB + AC (L = 1) [28]	-80.20
VLAE [7]	-79.03
VAE + IAF [18]	-79.88
CONVHVAE (L = 2) + VAMPPRIOR	-81.09
PixelHVAE $(L = 2)$ + VampPrior	-79.78

Top row: images generated by PixelHVAE + VampPrior for chosen pseudo-input in the left top corner.

Bottom row: Images represent a subset of trained pseudo-inputs for different datasets.

References

IWAE: Importance Weighted Autoencoders

https://arxiv.org/pdf/1509.00519.pdf

Summary: Propose the version of ELBO which is tighter to the log-density. Sampling of k objects from latent space instead of one. The more samples we samples the more tight the gap is. In the limit we will get the true likelihood. The gradient is given by importance sampling reweighting. Analyze the number of active latent units.

Reinterpreting Importance-Weighted Autoencoders

https://arxiv.org/abs/1704.02916

Summary: IWAE maximizes a tighter ELBO than VAE ELBO. This ELBO is also related to some implicit variational distribution. The analytical form of this distribution is given and visualized.

ELBO surgery: yet another way to carve up the variational evidence lower bound http://approximateinference.org/accepted/HoffmanJohnson2016.pdf Summary: Propose the decomposition of standard ELBO into 3 terms. The prior distribution should be close to average posterior. Show empirically that weak prior has a significant impact on ELBO value.

VAE with a VampPrior

https://arxiv.org/pdf/1705.07120.pdf

Summary: Variational Mixture of Posteriors prior is introduced. The VampPrior components are given by variational posteriors conditioned on learnable pseudo-inputs. Prior is extended to a two layer hierarchical model with a coupled prior and posterior, it learns significantly better models. The model avoids the local optima issues related to useless latent dimensions that plague VAEs. The prior is compared with standard gaussian and mixture of gaussians.

Hierarchical VAE

Hierarchical decomposition $p(\mathbf{z}_1, \ldots, \mathbf{z}_l) = p(\mathbf{z}_l)p(\mathbf{z}_{l-1}|\mathbf{z}_l) \ldots p(\mathbf{z}_1, \mathbf{z}_2);$ $q(\mathbf{z}_1,\ldots,\mathbf{z}_l|\mathbf{x}) = q(\mathbf{z}_1|\mathbf{x})\ldots q(\mathbf{z}_l|\mathbf{x}).$ EI BO $\mathcal{L}(q,\theta) = \mathbb{E}_{q(z_1|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}_1,\theta) - \mathcal{K}\mathcal{L}(q(\mathbf{z}_1,\ldots,\mathbf{z}_L|\mathbf{x})||p(\mathbf{z}_1,\ldots,\mathbf{z}_L))$ $= \mathbb{E}_{q(\mathbf{z}_1|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}_1, \boldsymbol{\theta}) - \int \prod_{i=1}^{L} q(\mathbf{z}_j|\mathbf{x}) \sum_{i=1}^{L} \log \frac{q(\mathbf{z}_i|\mathbf{x})}{p(\mathbf{z}_i|\mathbf{z}_{i+1})} d\mathbf{z}_1 \dots d\mathbf{z}_L$ $= \mathbb{E}_{q(\mathbf{z}_1|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}_1, \boldsymbol{\theta}) - \sum_{i=1}^{L} \int \prod_{j=1}^{L} q(\mathbf{z}_j|\mathbf{x}) \log \frac{q(\mathbf{z}_i|\mathbf{x})}{p(\mathbf{z}_i|\mathbf{z}_{i+1})} d\mathbf{z}_1 \dots d\mathbf{z}_L$ $= \mathbb{E}_{q(\mathbf{z}_{i}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}_{1}, \boldsymbol{\theta}) - \sum_{i=1}^{L} \int q(\mathbf{z}_{i+1}|\mathbf{x}) q(\mathbf{z}_{i}|\mathbf{x}) \log \frac{q(\mathbf{z}_{i}|\mathbf{x})}{p(\mathbf{z}_{i}|\mathbf{z}_{i+1})} d\mathbf{z}_{i} d\mathbf{z}_{i+1}$ $= \mathbb{E}_{q(\mathbf{z}_{i}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}_{1}, \boldsymbol{\theta}) - \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}_{i+1}|\mathbf{x})} \left[\mathcal{KL}(q(\mathbf{z}_{i}|\mathbf{x})||p(\mathbf{z}_{i}|\mathbf{z}_{i+1})) \right]$

$$p(\mathbf{x}|\boldsymbol{ heta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{ heta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}$$

How to make the generative model $p(\mathbf{x}|\mathbf{z}, \theta)$ more powerful? Autoregressive decoder

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \prod_{i=1}^{n} p(x_i|\mathbf{x}_{1:i-1}, \mathbf{z}, \boldsymbol{\theta})$$

Good idea for density estimation, but could be harmful for learning good representations!

Model	NLL Validation (Train)
Convolutional DRAW (Gregor et al., 2016)	$\leq 4.10 \ (4.04)$
Real NVP (Dinh et al., 2016)	= 4.01 (3.93)
PixelRNN (van den Oord et al., 2016a)	= 3.63 (3.57)
Gated PixelCNN (van den Oord et al., 2016b)	= 3.57 (3.48)
Hierarchical PixelVAE	\leq 3.66 (3.59)

Variational Lossy Autoencoder, 2016

Representation learning

"Identifies and disentangles the underlying causal factors of the data, so that it becomes easier to understand the data, to classify it, or to perform other tasks".

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}$$

Posterior collapse

Let consider extreme case, where $p(\mathbf{x}|\mathbf{z}, \theta)$ could be any distribution.

Then optimum will be at $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \pi(\mathbf{x})$.

Decoder weakening

How to force the model encode information about \mathbf{x} into \mathbf{z} ?

$$\mathcal{L}(q, \theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - \beta \cdot KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

What we get if $\beta = 1$ ($\beta = 0$)?

KL annealing

- Start training with $\beta = 0$.
- Increase it until $\beta = 1$ during training process.

https://arxiv.org/abs/1511.06349

Decoder weakening

Free bits

- Divide the latent dimensions into the K subsets.
- Ensure that using less than λ nats of information per subset j.

$$\hat{\mathcal{L}}(q, \theta) = \mathbb{E}_{q(\mathbf{Z}|\mathbf{X})} \log p(\mathbf{X}|\mathbf{Z}, \theta) - \sum_{j=1}^{K} \max(\lambda, KL(q(\mathbf{Z}_{j}|\mathbf{X})||p(\mathbf{Z}_{j}))).$$

Increasing the latent information is advantageous for the reconstruction term.

This results in $KL(q(\mathbf{Z}_j|\mathbf{x})||p(\mathbf{Z}_j)) \ge \lambda$ for all j, in practice.

Variational Lossy AutoEncoder, 2016

Lossy code via explicit information placement

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i|\mathbf{z}, \mathbf{x}_{\text{WindowAround}(i)}).$$

- WindowAround(i) restricts the receptive field (it forbids to represent arbitrarily complex distribution over x without dependence on z).
- Local statistics of 2D images (texture) will be modeled by a small local window.
- Global structural information (shapes) is long-range dependency that can only be communicated through latent code z.

Variational Lossy AutoEncoder, 2016

Theorem

AF prior is equivalent to IAF posterior.

Proof

$$\begin{aligned} \mathcal{L}(q, \theta) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}) - q(\mathbf{z}|\mathbf{x}) \right] \\ &= \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}), \mathbf{z}_0 = f(\mathbf{z})} \left[\log p(\mathbf{x}|g(\mathbf{z}_0), \theta) + \underbrace{\left(\log p(\mathbf{z}_0) + \log \left| \det \frac{\partial \mathbf{z}_0}{\partial \mathbf{z}} \right| \right)}_{\text{AF prior}} - q(\mathbf{z}|\mathbf{x}) \right] \\ &= \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}), \mathbf{z}_0 = f(\mathbf{z})} \left[\log p(\mathbf{x}|g(\mathbf{z}_0), \theta) + \log p(\mathbf{z}_0) - \underbrace{\left(q(\mathbf{z}|\mathbf{x}) - \log \left| \det \frac{\partial \mathbf{z}_0}{\partial \mathbf{z}} \right| \right)}_{\text{IAF posterior}} \right] \end{aligned}$$

- AF prior is the same as IAF posterior along the encoder path, $f(q(\mathbf{z}|\mathbf{x}))$,
- ► IAF posterior has a shorter decoder path p(x|z), AF prior has a deeper decoder path p(x|g(z₀)).

AF prior and IAF posterior have the same computation cost, so using AF prior makes the model more expressive at no training time cost.

Variational Lossy AutoEncoder, 2016

- Can VLAE learn lossy codes that encode global statistics?
- Does using AF priors improves upon using IAF posteriors as predicted by theory?
- Does using autoregressive decoding distributions improve density estimation performance?

		Method	bits/dim \leq
		Results with tractable likelihood models:	
		Uniform distribution [1]	8.00
		Multivariate Gaussian [1]	4.70
		NICE [2]	4.48
		Deep GMMs [3]	4.00
Model	NLL Test	Real NVP [4]	3.49
Normalizing flows (Rezende & Mohamed, 2015)	85.10	PixelCNN [1]	3.14
DRAW (Gregor et al., 2015)	< 80.97	Gated PixelCNN [5]	3.03
Discrete VAE (Rolfe, 2016)	81.01	PixelRNN [1]	3.00
PixelRNN (van den Oord et al., 2016a)	79.20	PixelCNN++ [6]	2.92
IAE VAE (Kingma et al. 2016)	70.88	Results with variationally trained latent-variable models:	
IAI VAL (Kingina et al., 2010)	79.00	Deep Diffusion [7]	5.40
AF VAE	/9.30	Convolutional DRAW [8]	3.58
VLAE	79.03	ResNet VAE with IAF [9]	3.11
		ResNet VLAE	3.04
		DenseNet VLAE	2.95

https://arxiv.org/abs/1606.04934

Disentangled representations

Goal

Learning an interpretable factorised representation of the independent data gen- erative factors of the world without supervision.

Informal definition

A disentangled representation can be defined as one where single latent units are sensitive to changes in single generative factors, while being relatively invariant to changes in other factors.

Example

Model trained on a dataset of 3D objects might learn independent latent units sensitive to single independent data generative factors, such as object identity, position, scale, lighting or colour.

https://openreview.net/references/pdf?id=Sy2fzU9gI

Generative process

- ► $p(\mathbf{x}|\mathbf{v},\mathbf{w}) = \text{Sim}(\mathbf{v},\mathbf{w}) \text{true world simulator;}$
- ▶ **v** conditionally independent factors: $p(\mathbf{v}|\mathbf{x}) = \prod_{k=1}^{K} p(v_k|\mathbf{x})$;
- w conditionally dependent factors.

Goal

Develop an unsupervised deep generative model

 $p(\mathbf{x}|\mathbf{z}) \approx p(\mathbf{x}|\mathbf{v}, \mathbf{w}).$

- Ensure that the inferred latent factors q(z|x) capture the factors v in a disentangled manner.
- The conditionally dependent factors w can remain entangled in a separate subset of z that is not used for representing v.

Constrained optimization

 $\max_{q,\theta} \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta), \quad \text{subject to } \mathcal{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) < \epsilon.$

Objective

$$\mathcal{L}(q, \theta, \beta) = \mathbb{E}_{q(\mathsf{z}|\mathsf{x})} \log p(\mathsf{x}|\mathsf{z}, \theta) - \beta \cdot KL(q(\mathsf{z}|\mathsf{x})||p(\mathsf{z})).$$

What do we get at $\beta = 1$?

Hypothesis

To learn disentangled representations of the conditionally independent factors **v**, it is important to set stronger constraint on the latent bottleneck: $\beta > 1$.

Note: It could lead to poorer reconstructions due to the loss of high frequency details when passing through a constrained latent bottleneck.

Disentangling metric

Accuracy of classifier $p(y|\mathbf{z}_{diff})$ with a low VC-dimension in order to ensure that it has no capacity to perform nonlinear disentangling itself.

$$\begin{split} \mathbf{x}_{li} &\sim \mathsf{Sim}(\mathbf{v}_{li}, \mathbf{w}_{li}); \quad \mathbf{x}_{lj} \sim \mathsf{Sim}(\mathbf{v}_{lj}, \mathbf{w}_{lj}); \quad y \sim U[1, \mathcal{K}]. \\ \mathbf{v}_{li} &\sim p(\mathbf{v}); \quad \mathbf{w}_{li} \sim p(\mathbf{w}); \quad \mathbf{v}_{lj} \sim p(\mathbf{v}) \left([\mathbf{v}_{li}]_{\mathcal{Y}} = [\mathbf{v}_{lj}]_{\mathcal{Y}} \right); \quad \mathbf{w}_{lj} \sim p(\mathbf{w}). \\ q(\mathbf{z}|\mathbf{x}) &= \mathcal{N} \left(\mu(\mathbf{x}) | \sigma^2(\mathbf{x}) \right); \quad \mathbf{z}_{li} = \mu(\mathbf{x}_{li}); \quad \mathbf{z}_{lj} = \mu(\mathbf{x}_{lj}). \\ \mathbf{z}_{\text{diff}} &= \frac{1}{L} \sum_{l=1}^{L} |\mathbf{z}_{li} - \mathbf{z}_{lj}|. \end{split}$$

https://openreview.net/references/pdf?id=Sy2fzU9gl

https://openreview.net/references/pdf?id=Sy2fzU9gl

□ ▶ 《□ ▶ 《 ె ▶ 《 ె ▶ 《 ె ▶ 《 □ ▶ 《 0 < ↔ 40 / 48

https://openreview.net/references/pdf?id=Sy2fzU9gl

https://openreview.net/references/pdf?id=Sy2fzU9gl

3

イロト イヨト イヨト イヨト

		• A z ₂ z ₆	β -VAE z_1 z_5	Z7 Zunus	\mathbf{B}_{z_4}
		stion			
		ai ut re			
		a late			
		notat		912749	
	Disentanglement] ≣ ĵ•		Ľ	
Model	metric score	trave .	• •	• •	· · · ·
Ground truth	100%	t mear	• •	• •	· ·
Raw pixels	$45.75 \pm 0.8\%$	• •	• •	• •	· · ·
PCA	$84.9\pm0.4\%$	single •	••	• •	
ICA	$42.03 \pm 10.6\%$	80.0 80.0 eesuut	0.22 0.50	0.51 0.99	0.07 (
DC-IGN	$99.3 \pm 0.1\%\%$		OC ICN	in rocason	р
InfoGAN	$73.5\pm0.9\%$		$z_1 z_2$	<i>≈</i> 5 <i>≈</i> 61	
AE untrained	$44.14 \pm 2.5\%$	e bost			
VAE	$61.58 \pm 0.5\%$	5 5			
B-VAE	$99.23 \pm \mathbf{0.1\%}$	Lotat			
,			• •	• •	
		•••	• •	• •	•
			• •	• •	0
		•	• •	• •	•
			•	• •	, .

https://openreview.net/references/pdf?id=Sy2fzU9gl

43 / 48

β = 1

									orig
					•	٠			recon
•		•	•						KL = 3.39 $\sigma = 0.08$
•		•	٠					2	KL-2.57 0-0.29
•	٠	•	•	•		٠	٠		KL = 2.32 $\sigma = 0.20$
		٠			•	٠			KL = 1.43 $\sigma = 0.43$
•		•			•	•		٠	KL = 0.00 $\sigma = 1.01$
		•			•	٠		٠	$\sigma = 0.00$

 $\beta = 150$

					•					orig
٠					٠		٠	٠		recon
-	-		٠	٠	٠					KL = 0.92 $\sigma = 0.43$
				٠	٠	•				KL = 0.91 $\sigma = 0.41$
٠	٠	٠	٠	٠	٠	٠	٠	٠		$KL=0.00 \\ \sigma=1.00$
٠	٠	٠	٠	٠	٠	٠	٠	٠	24	$KL=0.00$ $\sigma=1.00$
٠	٠	٠	٠	٠	٠	٠	٠	٠		KL = 0.00 $\sigma = 1.00$
٠	٠	٠	٠	٠	٠	٠	٠	٠		L = 0.00

Controlled encoding capacity

$$\mathcal{L}(q, \theta, eta) = \mathbb{E}_{q(\mathsf{z}|\mathsf{x})} \log p(\mathsf{x}|\mathsf{z}, \theta) - |\mathcal{K}\mathcal{L}(q(\mathsf{z}|\mathsf{x})||p(\mathsf{z})) - C|.$$

Controlled encoding capacity

$$\mathcal{L}(q, \theta, \beta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - |\mathcal{K}L(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) - C|.$$

(a) Coloured dSprites

(b) 3D Chairs 《 采 ト 市 木 市 岡 東 市 Data 《 采 ト 市 木 ト 岡 東 市 Reconstruction

-	*	×	*	栗	*	*	*	- 2	×	*
}	7	'n	ķ	¥	×	*	¥	ķ	ķ	Ņ
¥	X	*	-	-	-	ħ	ħ	1	1	h
Ļ	ř	ř	ř	¥	¥	×	×	¥	¥	¥
P	4	k	¥	¥	*	×	¥	¥	¥	ķ
¥	*	¥	*	*	¥	¥	¥	Ļ	Ļ	Ļ
4	4	¥	×	×	*	*	*	*	*	ķ
	←		_ Sir	ngle-la	atent	trave	rsals.			

References

- PixelVAE: A Latent Variable Model for Natural Images https://arxiv.org/pdf/1611.05013.pdf
 Summary: Use autoregressive model (PixelCNN) in VAE decoder. Use hierarchical structure of latent variables. Restrict the number of conv layers in PixelCNN (receptive field) to encode global structure in latent space. The performance is slightly worse than GatedPixelCNN.
- Generating Sentences from a Continuous Space https://arxiv.org/abs/1511.06349
 Summary: KL annealing proposed to weaken autoregressive decoder.
- Improving Variational Inference with Inverse Autoregressive Flow https://arxiv.org/abs/1606.04934
 Summary: Free bits proposed to weaken autoregressive decoder.
- VLAE: Variational Lossy Autoencoder https://arxiv.org/abs/1611.02731

Summary: Bits-back coding interpretation for posterior collapse. Solving the problem of ignoring latent codes. Reduce receptive field in PixelCNN decoder to encode global information, use learnable AF prior.

 beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework https://openreview.net/references/pdf?id=Sy2f2U9gl
 Summary: Modifications of VAE objective. The task is represented as constrained optimization. Increasing the weight of KL divergence term in ELBO allows to disentangle latent space factors and makes model more interpretable. The assessment of disentanglement is provided by constructing the classifier.

► Understanding disentangling in β-VAE https://arxiv.org/pdf/1804.03599.pdf Summary: Consider beta-VAE from the position of the rate-distortion theory (information bottleneck). Propose the modified ELBO with controlled latent capacity.