Deep Learning Concepts

Sergey Ivanov (617)

gbrick®@mail.ru

September 16, 2019

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 1/31

Deep Learning
m Basic idea
m Supervised learning
m Unsupervised learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 2/31

Deep Learning
000000

Deep Learning

Basic idea

Sergey Ivanov (617) MSU Deep Learning Concepts

ptember 16, 20 3/31

Deep Learning
(o] lelelele]e]

Key principle

Suppose we want to find some function y(x).

Concept of learning

construct some model y = f(x, 6) using basic building blocks

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 /31

Deep Learning
(o] lelelele]e]

Key principle

Suppose we want to find some function y(x).

Concept of learning

construct some model y = f(x, 6) using basic building blocks

select some differentiable scalar criterion to optimize L(f)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 /31

Deep Learning
(o] lelelele]e]

Key principle

Suppose we want to find some function y(x).

Concept of learning

construct some model y = f(x, 6) using basic building blocks
select some differentiable scalar criterion to optimize L(f)

select optimization procedure (i.e. gradient descent)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 /31

Deep Learning
(o] lelelele]e]

Key principle

Suppose we want to find some function y(x).

Concept of learning

construct some model y = f(x, 6) using basic building blocks

select some differentiable scalar criterion to optimize L(f)

select optimization procedure (i.e. gradient descent)
solve §* = mein L(f)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 /31

Deep Learning
[e]e] lelelele]

Neurons

\ i Dendrite

h /

]

,\ /
\ 4

g (@R
\ \ Axon
N

Node of ranvler /

Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts tember 16, 2019 5/31

Deep Learning
[e]e] lelelele]

Neurons

\ \ 4 Dgndrite
- A, - input: x € {0,1}
L OR— T

% o e
N

Node of ranvler /

Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts tember 16, 2019 5/31

Deep Learning
[e]e] lelelele]

Neurons

\ \\ 4 Dendrite
A
e ' ° ey M X 6 {0’ 1}”
e @ parameters: w € R”,5 € R
. \ Q,,,
/\\, / ’ 2
Node of ranvuer /

Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5/31

Deep Learning
[e]e] lelelele]

Neurons

\ " Dendrite

4 / . .
- put: x € {0,1}
(cseJL".-?d" *HO g parameters: w € R", b € R

. \qm i-th signal: w;x;
/\\, /’ “
Node of ranvuer /

Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5/31

Deep Learning
[e]e] lelelele]

Neurons

\ \ 4 Dendrite
AN
- input: x € {0,1}"
(cseo'L".-?"" *HO b parameters: w € R", b € R
. \qm i-th signal: w;x;
/\\, /y 2, accumulation: >~ wix;

Node of ranvler /
Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5/31

Deep Learning
[e]e] lelelele]

Neurons

\ i Dendrite

input: x € {0,1}"

F il
(cseo'L".-?"" *HO e parameters: w € R", b € R
. \Axon i-th signal: w;x;
/\\, /y\\ accumulation: >~ wix;
Noder ra"“'e’/ output: > wix; > b
Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5/31

Deep Learning
[e]e]e] lelele]

Artificial neurons

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 6 /31

Deep Learning
[e]e]e] lelele]

Artificial neurons

y(x) =I[(w,x) — b > 0]
1.00 =====
075
Z o0s0 —— Heaviside step function (indicator)
0.25
0.00
—40 —20 0 20 40

Sergey Ivanov (617)

MSU

Deep Learning Concepts

ptember 16, 2019

6/ 31

Deep Learning
[e]e]e] lelele]

Artificial neurons

y(x) =I[{w, x) — b > 0]

100

075

= —— Heaviside step function (indicator)
0.50 . -

) —— Sigmoid function
025

—40 —20 0 20 40

General idea

Everything discrete can be smoothed!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 6 /31

Deep Learning
[e]e]e] lelele]

Artificial neurons

y(x) = o ({(w,x) — b)

100

075

= —— Heaviside step function (indicator)
0.50 . -

) —— Sigmoid function
025

—40 —20 0 20 40

General idea

Everything discrete can be smoothed!

Sigmoid function:
()= 1o
X)=——
? 14 e

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 6 /31

Deep Learning
[ee]ele] Tele]

Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7/31

Deep Learning
[ee]ele] Tele]

Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

o
&5 universal approximation properties!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7/31

Deep Learning
[ee]ele] Tele]

Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

o
&5 universal approximation properties!

if there is infinite number of neurons...

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7/31

Deep Learning
[ee]ele] Tele]

Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

@ universal approximation properties!
if there is infinite number of neurons...
@ stack more layers!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7/31

Deep Learning
[ee]ele] Tele]

Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

@ universal approximation properties!
if there is infinite number of neurons...

@ stack more layers!
gradient vanishing / exploding problem!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7/31

Deep Learning
0O0000e0

Stacking a lot of layers

Sergey Ivanov (617) MSU Deep Learning Concepts

ptember 16, 2019 8 /31

Deep Learning
0O0000e0

Stacking a lot of layers

Residual connections

y =x+o(Wx —b)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 /31

Deep Learning
0O0000e0

Stacking a lot of layers

5}

N

< =
el e

=]

=}

Residual connections

y =x+o(Wx —b)

Layer normalization

p=3x =S -y =(x—p)s

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 /31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?

m categorical features: one-hot encoding

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?

m categorical features: one-hot encoding
m images: convolutional layers 4+ pooling (CNN)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?
m categorical features: one-hot encoding
m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?
m categorical features: one-hot encoding
m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)
m raw audio: ?!?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?
m categorical features: one-hot encoding
m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)
m raw audio: 717
m output y may have some complex structure: how to build the
model?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?

m categorical features: one-hot encoding

m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)
m raw audio: ?!?

m output y may have some complex structure: how to build the
model?

m no or little data available, how to choose criterion?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?

m categorical features: one-hot encoding

m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)
m raw audio: ?!?

m output y may have some complex structure: how to build the
model?

m no or little data available, how to choose criterion?

m uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9/31

Deep Learning
000000000

Deep Learning

Supervised learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 10 / 31

Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized

transformation

High-level
extracted
features!

AN

Fully-connected

/ layers

Sergey Ivanov (617) MSU

Deep Learning Concepts

September 16, 2019

11/ 31

Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level
extracted
features!

AN

Fully-connected

— layers

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 /31

Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level stack some FC layers and get

features! high-level representation

k z(x) € RY

Fully-connected

— layers

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 /31

Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level stack some FC layers and get

features! high-level representation

\ z(x) € RY
. choose final decision rule y(z).

Fully-connected

/ layers

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 /31

Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level stack some FC layers and get

features! high-level representation

\ z(x) € RY
. choose final decision rule y(z).

Fully-connected

e layers choose loss function Loss(y, 7)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 /31

Deep Learning

O@00000000

Supervised learning

ut Also some
parametrized
4,_/transformation Let (X,‘,y,') be our data.

High-level stack some FC layers and get
features! high-level representation

\ z(x) € RY
. choose final decision rule y(z).

Fully-connected

T layens choose loss function Loss(y,)
L(F) = & 5 Loss(yi, 9(2(x:)))

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 /31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).

EyeR

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).

EyeR
m Linear layer: y = (w,z) + b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: y = (w,z) + b
= y€[0,1]

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: §y = (w,z) + b
= y€[0,1]
m Linear layer + sigmoid: y = o ({w,z) + b)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 /31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: y = (w,z) + b
my€|0,]1]
m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 /31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: §y = (w,z) + b
= y€[0,1]
m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,
m Linear + exp: y = e{w:2)+b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 /31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: §y = (w,z) + b
= y€[0,1]
m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,
m Linear + exp: y = e{w:2)+b

A

= Linear + softplus: § = log (1 + e{":2)*b)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: §y = (w,z) + b
= y€[0,1]
m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,
m Linear + exp: y = e{w:2)+b

A

= Linear + softplus: § = log (1 + e{":2)*b)
myei{1,23...C}

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).

EyeR

m Linear layer: y = (w,z) + b
= y€[0,1]

m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,

m Linear + exp: y = e{w:2)+b

= Linear + softplus: § = log (1 + e{":2)*b)
mye{l1,2,3...C}

m Linear layer 4 softmax: y = softmax ({w, z) + b)

(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
= MSE, MAE

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 /31

Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
s MSE, MAE
m Classification

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 /31

Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
= MSE, MAE
m Classification
m why cross-entropy is so popular?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 /31

Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
m MSE, MAE
m Classification
m why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x,y ~ p(x,y) = p(x)p(y | x)
ply [x) —7

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 /31

Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
m MSE, MAE
m Classification
m why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x,y ~ p(x,y) = p(x)p(y | x)
ply [x) —7

Our neural network actually defines approximating distribution
q(y | x,60). What to do next?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 /31

Deep Learning

0O000@00000

Losses derivation

m Maximum likelihood estimation:

Hq(y,- | xi, 0) — max

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 31

Deep Learning

0O000@00000

Losses derivation

m Maximum likelihood estimation:

Hq YI|X/> —>max

m Divergence minimization:

D(p(y [x) Il a(yi [xi,6)) — min

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 31

Deep Learning

0O000@00000

Losses derivation

m Maximum likelihood estimation:

Hq YI|X/> —>max

m Divergence minimization:

D(p(y [x) Il a(yi [xi,6)) — min

m Bayesian inference: seek for p(6 | X, Y)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 31

Deep Learning

[e]e]ele]e] lelelele)

Divergences

0.125 — plx)=N(20,10)
0.100
0.075
0.050
0.025

0.000

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019

Deep Learning

[e]e]ele]e] lelelele)

Divergences

0125 — plx)=~(20,10)
0.100 — gix)=N(-5,3)
0.075
0.050
0.025

0.000

Kullback-Leibler divergence
Wasserstein distance
Jensen-Shannon divergence

Cramer distance

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 15 / 31

Deep Learning

[e]e]ele]e] lelelele)

Divergences

0.125 — plx)=A120,10)
0.100 — gix)=N(-5,3)
0.075
0.050
0.025
0.000
=20 =10 4] 10 20 30 40 50

m Kullback-Leibler divergence — the chosen one!

m Wasserstein distance

= Jensen-Shannon divergence

m Cramer distance

m .

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 15 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

— ply)
KL(p || 9) -—/yp(y) log q(y)dy

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Wonderful properties:

x p and g must share domain

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Wonderful properties:
x p and g must share domain

X assymetric

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Wonderful properties:
x p and g must share domain
X assymetric

% does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019

16 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Og';g;

Wonderful properties:
x p and g must share domain
X assymetric

% does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

0000000 e00

Motivation behind Kullback-Leibler

Recall our task:

KL(p(y | %) Il (i | x,0)) = min

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 31

Deep Learning

0000000 e00

Motivation behind Kullback-Leibler

Recall our task:
KL(p(y | x) I q(yi | %, 0)) — min
Using definition:

Ep(yix) log p(y | x) — Epqypx) log q(yi | xi,0) — min

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 31

Deep Learning

0000000 e00

Motivation behind Kullback-Leibler

Recall our task:
KL(p(y | %) I a(yi | x:6)) — min
Using definition:
Epeypx) log p(y | x) = Epgypx) log q(yi | xi,0) — min

Const(0) terms can be ignored!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 31

Deep Learning

0000000 e00

Motivation behind Kullback-Leibler

Recall our task:
KL(p(y | %) I a(yi | x:6)) — min

Using definition:
—Epyix) log q(yi | xi, 0) — mein

Const(0) terms can be ignored!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 31

Deep Learning

0000000 e00

Motivation behind Kullback-Leibler

Recall our task:
KL(p(y | %) I a(yi | x:6)) — min

Using definition:
—Epyix) log q(yi | xi, 0) — mein

Const(0) terms can be ignored!

Implicit expectation minimization

We do not know p(y | x), but ability to sample from it is enough!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 31

Deep Learning

0000000080

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 31

Deep Learning

0000000080

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min

Proposition: VyL(f) = E,)V Loss(x, y,0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 31

Deep Learning

0000000080

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min

Proposition: VyL(f) = E,)V Loss(x, y,0)

Monte-Carlo estimation

M
1
Ep(x,y) Ve Loss(x, y, 0) ~ o Z Vg Loss(xi, yi, 0)

where x;, y; are samples from p(x, y).

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 31

Deep Learning

0000000080

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min

Proposition: VyL(f) = E,)V Loss(x, y,0)

Monte-Carlo estimation

M
1
Ep(x,y) Ve Loss(x, y, 0) ~ o Z Vg Loss(xi, yi, 0)

where x;, y; are samples from p(x, y).
V" an unbiased estimation (gives true gradient in expectation)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 31

Deep Learning

000000000 e

Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 1 SGD
1: Initialize 8y randomly
:fort=0,1,2,... do
Sample M pairs x;, y; ~ p(x,y)
gt ﬁ E,M Vo Loss(x;, yi, 0¢)
Orr1 < 0r — gt
end for

AL

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 19 / 31

Deep Learning

000000000 e

Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 2 SGD

1: Initialize 8y randomly

2: fort=0,1,2,... do
3: Sample M pairs x;, y; ~ p(x,y)
4: 8t < ﬁ E,M Vg LOSS(X,‘, Yi, 91_»)
5
6

Orp1 < O — 0e8e
. end for

SGD converges to local optima if
Zat 400 Zat < +o0

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 19 / 31

Deep Learning
@®00000000000

Deep Learning

Unsupervised learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 20 /31

Deep Learning

O@®0000000000

Autoencoder

I

feature
representation

ENCODER ("code")

5

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 21 /31

Deep Learning

O@®0000000000

Autoencoder

Loss = [|x — x||

Y

reconstruction

feature
representation

ENCODER ("code")

coss

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 21 /31

DECODER

e

Deep Learning

O0@000000000

Shaping latent representation

(Is]I? | @ (Loss = |Ix— %]

Y

reconstruction

feature
representation

ENCODER ("code")

coss

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 22 /31

DECODER

e

Deep Learning

O0@000000000

Shaping latent representation

KL(p(s) | NO, D) b D (Loss = [Ix — &I
—

reconstruction

" feature
representation
("eode")

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 22 /31

Deep Learning

O0@000000000

Shaping latent representation

KL, D || p(s) b~ @ [Loss = ||Ix - 2I*)
—

reconstruction

" feature
representation
("eode")

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 22 /31

Deep Learning

[e]e]e] le]ele]e]ele]e]e]

VAE

leehhood

DECODER

ENCODER

200 b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 23 /31

Deep Learning

[e]e]e] le]ele]e]ele]e]e]

VAE

[KL(.N' (u,0) || N, I)] leehhood
&)
DECODER
ENCODER

200 b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 23 /31

Deep Learning

[e]e]e] le]ele]e]ele]e]e]

VAE

(KLW(,0) | NO,D)] & | —Likelihood |
T ® o

= DECODER
(N(,I))/ ENCODER

200 b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 23 /31

Deep Learning

[e]e]e] le]ele]e]ele]e]e]

VAE

(KLW(,0) | NO,D)] & | —Likelihood |

DECODER
(N(,I))/ ENCODER

S\

~ Nu.a™D)
—

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 23 /31

Deep Learning

[e]e]e]e] lelele]ele]e]e]

Possible usage

[Loss]

learned
representation

ENCODER

TASK-
SPECIFIC

NET S
e

|

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 /31

Deep Learning

[e]e]e]e] lelele]ele]e]e]

Possible usage

Loss =|lx— x|| Loss

learned
representation

%) (Loutput)

ENCODER DECODER LT\
rasic é , 9

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 /31

Deep Learning

[e]e]e]e]e] lele]ele]e]e]

Transfer learning

FROZEN

(no parameters updates)

\

[Loss]

TASK- é ¥
SPECIFIC -
NET ‘,,‘ 5

Sergey Ivanov (617)

MSU

Deep Learning Concepts

September 16, 2019 25 /31

Deep Learning

[e]e]e]e]e] lele]ele]e]e]

Transfer learning

/ FROZEN \

(no parameters updates)

dmic e
XGBoost -

) 4

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 25 /31

Deep Learning

[e]e]e]ele]e] le]ele]e]e]

Example: digits that are not!

"https://arxiv.org/abs/1606.04345
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 26 / 31

https://arxiv.org/abs/1606.04345

Deep Learning

[e]e]e]ele]e] le]ele]e]e]

Example: digits that are not!

M DR R 2R,
S F r T rrrrrrrrrrrry
l}f‘ﬂk—fu (SR T S S~ S S S SN S S SR SN

"‘.A S A W e N WA) W) W) s N G e e e

AARAALILLLLESESSRF L EKFGg944

dAARAAIL A Y| s X SRV E999 9

d ARAALLLLFASES(tblF|nn 90

A4 AALLLELISS S /- R 0N g
P org/ab 606.0434

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 26 /31

https://arxiv.org/abs/1606.04345

Deep Learning

0OO000000@0000

Generative Adversarial Networks (GAN)

Psynth Pdata
x(z1) X1
x(z2) X2
x(z3) X3
% GENERATOR
e
(z)

.....

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 27 /31

Deep Learning

0OO000000@0000

Generative Adversarial Networks (GAN)

Training discriminator D:
Loss(D, G) :=
DISCRIMINATOR _ _
% IExNplreal log D(X)
Psynth (—I deata _Exwpsynth IOg(l_D(X)) — len

x(z1) X1

x(z2) X2
x(z3) *3

)
%GENEMTOR
Cz D

.....

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 27 /31

Deep Learning

0OO000000@0000

Generative Adversarial Networks (GAN)

Training discriminator D:
i Loss(D, G) :=

%DISCRIMINATOR _EX ~Preal log D(x)

deata _Exwpsynth |0g(1—D(X)) - len
X1 ..
X Training generator G:
X3

Loss(D, G) — max

2 GENERATOR

= =

\ S

bl ——»f/xv
~
N
-~/ N

.....

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 27 /31

Deep Learning

0OO000000@0000

Generative Adversarial Networks (GAN)

Training discriminator D:
i Loss(D, G) :=

%DISCRIMINATOR _EX ~Preal log D(x)

deata _Exwpsynth |0g(1—D(X)) - len
X1 ..
X Training generator G:
X3

Loss(D, G) — max

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 27 /31

Deep Learning

000000008000

Conditional GAN (cGAN)

‘ in Train psynth(x | €)

to imitate pgata(x | €)!
%DISCRIMINATQR
deata

Psynth

x(z1), €1 x1.c1
,
x(z2), c2 X2,C
x(z3), ¢3 X3,€3

i
% GENERATOR

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 28 / 31

Deep Learning

000000008000

Conditional GAN (cGAN)

‘ in Train psynth(x | €)
to imitate pgata(x | €)!
%DISCRIMINATQR
Psynth gl’dm Ecp(c) Loss(D, G, c) — mDin
x(z1), €1 x1.c1
x(z2),¢2 X2, €2 Ecrp(c) Loss(D, G, ¢) — max
x(z3), ¢3 X3,€3 G

i
% GENERATOR

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 28 / 31

Deep Learning

000000008000

Conditional GAN (cGAN)

‘ in Train psynth(x | €)
to imitate pgata(x | €)!
%DISCRIMINATQR
Psynth —— Paata Ecrp(c) Loss(D, G, ¢) — min
x(z1), €1 X D
1,€C1
x(z2), c2 X2,C2 E L
oss(D, G,c) — ma
x(z3), ¢3 X3,C3 c~p(c) ([) GX
)
% V" condition can be of any
GENERATOR .
complexity!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 28 / 31

Deep Learning

000000008000

Conditional GAN (cGAN)

%DISCRIMINATQR
Q Pdata

Psynth

x(z1), €1 x1.c1
,
x(z2), c2 X2,C
x(z3), ¢3 X3,€3

i
% GENERATOR

Sergey Ivanov (617) MSU

Deep Learning Concepts

Train psynth(x | €)
to imitate pgata(x | €)!

Ecp(c) Loss(D, G, c) — mDin
Ecp(c) Loss(D, G, c) — max

V" condition can be of any
complexity!

v~ can be viewed as loss
function learning when
output is complex

September 16, 2019 28 / 31

Deep Learning

000000000 e00

cGAN: Example

DISCRIMINATOR

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 29 /31

Deep Learning

000000000 e00

cGAN: Example

DISCRIMINATOR

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 29 /31

Deep Learning

000000000080

Unpaired learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 30 /31

Deep Learning

000000000080

Unpaired learning

GENERATOR
X-Y
(NOISE)
‘\
Al
’
X1 212 Y1
X2 »2
X3 y3
‘I
\
\
l\
(NOISE)
GENERATOR
Vo X

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 30 /31

Deep Learning

000000000080

Unpaired learning

GENERATOR
X-Y

(NOISE NOISE) %
DISCRIMINATOR »
"is this x real?"
Y2
DISCRIMINATOR
% y3 "is this y real?"

e

(NOISE)

GENERATOR

Y- X
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 30 /31

Deep Learning

000000000080

Unpaired learning

GENERATOR
X-Y
(NOISE)
RECONSTRUCTION LOSS
2]
[1G2(G1(x)) — xI| m

DISCRIMINATOR 219
"is this x real?" -
DISCRIMINATOR
<—l—“_
[Paxe | ‘
.
A RECONSTRUCTION LOSS
2
N 161G () = ¥
(NOISE)
GENERATOR
Y- X

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 30 /31

Deep Learning

00000000000 e

CycleGAN: Example

Summer _ Winter

Zebras 7 Horses
L8

winter —} summer

horse —» zebra

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 31/31

	Deep Learning
	Basic idea
	Supervised learning
	Unsupervised learning

