
Deep Learning

Deep Learning Concepts

Sergey Ivanov (617)

qbrick@mail.ru

September 16, 2019

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 1 / 31

Deep Learning

1 Deep Learning
Basic idea
Supervised learning
Unsupervised learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 2 / 31

Deep Learning

Deep Learning
Basic idea

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 3 / 31

Deep Learning

Key principle

Suppose we want to find some function y(x).

Concept of learning

1 construct some model y = f (x , θ) using basic building blocks

2 select some differentiable scalar criterion to optimize L(f)

3 select optimization procedure (i.e. gradient descent)
4 solve θ∗ = min

θ
L(f)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 / 31

Deep Learning

Key principle

Suppose we want to find some function y(x).

Concept of learning

1 construct some model y = f (x , θ) using basic building blocks
2 select some differentiable scalar criterion to optimize L(f)

3 select optimization procedure (i.e. gradient descent)
4 solve θ∗ = min

θ
L(f)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 / 31

Deep Learning

Key principle

Suppose we want to find some function y(x).

Concept of learning

1 construct some model y = f (x , θ) using basic building blocks
2 select some differentiable scalar criterion to optimize L(f)

3 select optimization procedure (i.e. gradient descent)

4 solve θ∗ = min
θ

L(f)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 / 31

Deep Learning

Key principle

Suppose we want to find some function y(x).

Concept of learning

1 construct some model y = f (x , θ) using basic building blocks
2 select some differentiable scalar criterion to optimize L(f)

3 select optimization procedure (i.e. gradient descent)
4 solve θ∗ = min

θ
L(f)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 / 31

Deep Learning

Neurons

input: x ∈ {0, 1}n
parameters: w ∈ Rn, b ∈ R

1 i-th signal: wixi

2 accumulation:
∑

i wixi

3 output:
∑

i wixi > b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5 / 31

Deep Learning

Neurons

input: x ∈ {0, 1}n

parameters: w ∈ Rn, b ∈ R

1 i-th signal: wixi

2 accumulation:
∑

i wixi

3 output:
∑

i wixi > b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5 / 31

Deep Learning

Neurons

input: x ∈ {0, 1}n
parameters: w ∈ Rn, b ∈ R

1 i-th signal: wixi

2 accumulation:
∑

i wixi

3 output:
∑

i wixi > b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5 / 31

Deep Learning

Neurons

input: x ∈ {0, 1}n
parameters: w ∈ Rn, b ∈ R

1 i-th signal: wixi

2 accumulation:
∑

i wixi

3 output:
∑

i wixi > b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5 / 31

Deep Learning

Neurons

input: x ∈ {0, 1}n
parameters: w ∈ Rn, b ∈ R

1 i-th signal: wixi

2 accumulation:
∑

i wixi

3 output:
∑

i wixi > b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5 / 31

Deep Learning

Neurons

input: x ∈ {0, 1}n
parameters: w ∈ Rn, b ∈ R

1 i-th signal: wixi

2 accumulation:
∑

i wixi

3 output:
∑

i wixi > b

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5 / 31

Deep Learning

Artificial neurons

y(x) = I[〈w , x〉 − b > 0]

General idea

Everything discrete can be smoothed!

Sigmoid function:

σ(x) =
1

1+ e−x

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 6 / 31

Deep Learning

Artificial neurons

y(x) = I[〈w , x〉 − b > 0]

General idea

Everything discrete can be smoothed!

Sigmoid function:

σ(x) =
1

1+ e−x

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 6 / 31

Deep Learning

Artificial neurons

y(x) = I[〈w , x〉 − b > 0]

General idea

Everything discrete can be smoothed!

Sigmoid function:

σ(x) =
1

1+ e−x

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 6 / 31

Deep Learning

Artificial neurons

y(x) = σ (〈w , x〉 − b)

General idea

Everything discrete can be smoothed!

Sigmoid function:

σ(x) =
1

1+ e−x

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 6 / 31

Deep Learning

Fully-connected layer

Standard building block for neural networks:

y(x) = σ(Wx − b)

universal approximation properties!

if there is infinite number of neurons...

stack more layers!

gradient vanishing / exploding problem!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 31

Deep Learning

Fully-connected layer

Standard building block for neural networks:

y(x) = σ(Wx − b)

universal approximation properties!

if there is infinite number of neurons...

stack more layers!

gradient vanishing / exploding problem!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 31

Deep Learning

Fully-connected layer

Standard building block for neural networks:

y(x) = σ(Wx − b)

universal approximation properties!

if there is infinite number of neurons...

stack more layers!

gradient vanishing / exploding problem!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 31

Deep Learning

Fully-connected layer

Standard building block for neural networks:

y(x) = σ(Wx − b)

universal approximation properties!

if there is infinite number of neurons...

stack more layers!

gradient vanishing / exploding problem!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 31

Deep Learning

Fully-connected layer

Standard building block for neural networks:

y(x) = σ(Wx − b)

universal approximation properties!

if there is infinite number of neurons...

stack more layers!

gradient vanishing / exploding problem!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 31

Deep Learning

Stacking a lot of layers

Residual connections

y = x + σ(Wx − b)

Layer normalization

µ =
1
m

n∑
i

xi s2 =
1
m

n∑
i

(xi − µ) y = (x − µ)/s

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 / 31

Deep Learning

Stacking a lot of layers

Residual connections

y = x + σ(Wx − b)

Layer normalization

µ =
1
m

n∑
i

xi s2 =
1
m

n∑
i

(xi − µ) y = (x − µ)/s

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 / 31

Deep Learning

Stacking a lot of layers

Residual connections

y = x + σ(Wx − b)

Layer normalization

µ =
1
m

n∑
i

xi s2 =
1
m

n∑
i

(xi − µ) y = (x − µ)/s

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 / 31

Deep Learning

Typical issues

input x may have some complex structure: how to convert it
to vector in Rd?

categorical features: one-hot encoding
images: convolutional layers + pooling (CNN)
sequence: recurrent layers (RNN, LSTM, GRU)
raw audio: ?!?

output y may have some complex structure: how to build the
model?
no or little data available, how to choose criterion?
uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 31

Deep Learning

Typical issues

input x may have some complex structure: how to convert it
to vector in Rd?

categorical features: one-hot encoding

images: convolutional layers + pooling (CNN)
sequence: recurrent layers (RNN, LSTM, GRU)
raw audio: ?!?

output y may have some complex structure: how to build the
model?
no or little data available, how to choose criterion?
uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 31

Deep Learning

Typical issues

input x may have some complex structure: how to convert it
to vector in Rd?

categorical features: one-hot encoding
images: convolutional layers + pooling (CNN)

sequence: recurrent layers (RNN, LSTM, GRU)
raw audio: ?!?

output y may have some complex structure: how to build the
model?
no or little data available, how to choose criterion?
uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 31

Deep Learning

Typical issues

input x may have some complex structure: how to convert it
to vector in Rd?

categorical features: one-hot encoding
images: convolutional layers + pooling (CNN)
sequence: recurrent layers (RNN, LSTM, GRU)

raw audio: ?!?

output y may have some complex structure: how to build the
model?
no or little data available, how to choose criterion?
uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 31

Deep Learning

Typical issues

input x may have some complex structure: how to convert it
to vector in Rd?

categorical features: one-hot encoding
images: convolutional layers + pooling (CNN)
sequence: recurrent layers (RNN, LSTM, GRU)
raw audio: ?!?

output y may have some complex structure: how to build the
model?
no or little data available, how to choose criterion?
uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 31

Deep Learning

Typical issues

input x may have some complex structure: how to convert it
to vector in Rd?

categorical features: one-hot encoding
images: convolutional layers + pooling (CNN)
sequence: recurrent layers (RNN, LSTM, GRU)
raw audio: ?!?

output y may have some complex structure: how to build the
model?

no or little data available, how to choose criterion?
uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 31

Deep Learning

Typical issues

input x may have some complex structure: how to convert it
to vector in Rd?

categorical features: one-hot encoding
images: convolutional layers + pooling (CNN)
sequence: recurrent layers (RNN, LSTM, GRU)
raw audio: ?!?

output y may have some complex structure: how to build the
model?
no or little data available, how to choose criterion?

uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 31

Deep Learning

Typical issues

input x may have some complex structure: how to convert it
to vector in Rd?

categorical features: one-hot encoding
images: convolutional layers + pooling (CNN)
sequence: recurrent layers (RNN, LSTM, GRU)
raw audio: ?!?

output y may have some complex structure: how to build the
model?
no or little data available, how to choose criterion?
uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 31

Deep Learning

Deep Learning
Supervised learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 10 / 31

Deep Learning

Supervised learning

Let (xi , yi) be our data.
xi ∈ RD

1 stack some FC layers and get
high-level representation
z(x) ∈ Rd

2 choose final decision rule ŷ(z).
3 choose loss function Loss(y , ŷ)

4 L(f) = 1
N

∑
i
Loss(yi , ŷ(z(xi)))

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 31

Deep Learning

Supervised learning

Let (xi , yi) be our data.
xi ∈ RD

1 stack some FC layers and get
high-level representation
z(x) ∈ Rd

2 choose final decision rule ŷ(z).
3 choose loss function Loss(y , ŷ)

4 L(f) = 1
N

∑
i
Loss(yi , ŷ(z(xi)))

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 31

Deep Learning

Supervised learning

Let (xi , yi) be our data.
xi ∈ RD

1 stack some FC layers and get
high-level representation
z(x) ∈ Rd

2 choose final decision rule ŷ(z).
3 choose loss function Loss(y , ŷ)

4 L(f) = 1
N

∑
i
Loss(yi , ŷ(z(xi)))

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 31

Deep Learning

Supervised learning

Let (xi , yi) be our data.
xi ∈ RD

1 stack some FC layers and get
high-level representation
z(x) ∈ Rd

2 choose final decision rule ŷ(z).

3 choose loss function Loss(y , ŷ)

4 L(f) = 1
N

∑
i
Loss(yi , ŷ(z(xi)))

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 31

Deep Learning

Supervised learning

Let (xi , yi) be our data.
xi ∈ RD

1 stack some FC layers and get
high-level representation
z(x) ∈ Rd

2 choose final decision rule ŷ(z).
3 choose loss function Loss(y , ŷ)

4 L(f) = 1
N

∑
i
Loss(yi , ŷ(z(xi)))

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 31

Deep Learning

Supervised learning

Let (xi , yi) be our data.
xi ∈ RD

1 stack some FC layers and get
high-level representation
z(x) ∈ Rd

2 choose final decision rule ŷ(z).
3 choose loss function Loss(y , ŷ)

4 L(f) = 1
N

∑
i
Loss(yi , ŷ(z(xi)))

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 31

Deep Learning

Final decision rules

Here z ∈ Rd is high-level representation (outputs from neurons on
final layer).

y ∈ R

Linear layer: ŷ = 〈w , z〉+ b

y ∈ [0, 1]
Linear layer + sigmoid: ŷ = σ (〈w , z〉+ b)

y ∈ R++

Linear + exp: ŷ = e〈w ,z〉+b

Linear + softplus: ŷ = log
(
1 + e〈w ,z〉+b

)
y ∈ {1, 2, 3 . . .C}

Linear layer + softmax: ŷ = softmax (〈w , z〉+ b)
(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

Final decision rules

Here z ∈ Rd is high-level representation (outputs from neurons on
final layer).

y ∈ R
Linear layer: ŷ = 〈w , z〉+ b

y ∈ [0, 1]
Linear layer + sigmoid: ŷ = σ (〈w , z〉+ b)

y ∈ R++

Linear + exp: ŷ = e〈w ,z〉+b

Linear + softplus: ŷ = log
(
1 + e〈w ,z〉+b

)
y ∈ {1, 2, 3 . . .C}

Linear layer + softmax: ŷ = softmax (〈w , z〉+ b)
(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

Final decision rules

Here z ∈ Rd is high-level representation (outputs from neurons on
final layer).

y ∈ R
Linear layer: ŷ = 〈w , z〉+ b

y ∈ [0, 1]

Linear layer + sigmoid: ŷ = σ (〈w , z〉+ b)

y ∈ R++

Linear + exp: ŷ = e〈w ,z〉+b

Linear + softplus: ŷ = log
(
1 + e〈w ,z〉+b

)
y ∈ {1, 2, 3 . . .C}

Linear layer + softmax: ŷ = softmax (〈w , z〉+ b)
(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

Final decision rules

Here z ∈ Rd is high-level representation (outputs from neurons on
final layer).

y ∈ R
Linear layer: ŷ = 〈w , z〉+ b

y ∈ [0, 1]
Linear layer + sigmoid: ŷ = σ (〈w , z〉+ b)

y ∈ R++

Linear + exp: ŷ = e〈w ,z〉+b

Linear + softplus: ŷ = log
(
1 + e〈w ,z〉+b

)
y ∈ {1, 2, 3 . . .C}

Linear layer + softmax: ŷ = softmax (〈w , z〉+ b)
(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

Final decision rules

Here z ∈ Rd is high-level representation (outputs from neurons on
final layer).

y ∈ R
Linear layer: ŷ = 〈w , z〉+ b

y ∈ [0, 1]
Linear layer + sigmoid: ŷ = σ (〈w , z〉+ b)

y ∈ R++

Linear + exp: ŷ = e〈w ,z〉+b

Linear + softplus: ŷ = log
(
1 + e〈w ,z〉+b

)
y ∈ {1, 2, 3 . . .C}

Linear layer + softmax: ŷ = softmax (〈w , z〉+ b)
(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

Final decision rules

Here z ∈ Rd is high-level representation (outputs from neurons on
final layer).

y ∈ R
Linear layer: ŷ = 〈w , z〉+ b

y ∈ [0, 1]
Linear layer + sigmoid: ŷ = σ (〈w , z〉+ b)

y ∈ R++

Linear + exp: ŷ = e〈w ,z〉+b

Linear + softplus: ŷ = log
(
1 + e〈w ,z〉+b

)
y ∈ {1, 2, 3 . . .C}

Linear layer + softmax: ŷ = softmax (〈w , z〉+ b)
(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

Final decision rules

Here z ∈ Rd is high-level representation (outputs from neurons on
final layer).

y ∈ R
Linear layer: ŷ = 〈w , z〉+ b

y ∈ [0, 1]
Linear layer + sigmoid: ŷ = σ (〈w , z〉+ b)

y ∈ R++

Linear + exp: ŷ = e〈w ,z〉+b

Linear + softplus: ŷ = log
(
1 + e〈w ,z〉+b

)

y ∈ {1, 2, 3 . . .C}
Linear layer + softmax: ŷ = softmax (〈w , z〉+ b)
(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

Final decision rules

Here z ∈ Rd is high-level representation (outputs from neurons on
final layer).

y ∈ R
Linear layer: ŷ = 〈w , z〉+ b

y ∈ [0, 1]
Linear layer + sigmoid: ŷ = σ (〈w , z〉+ b)

y ∈ R++

Linear + exp: ŷ = e〈w ,z〉+b

Linear + softplus: ŷ = log
(
1 + e〈w ,z〉+b

)
y ∈ {1, 2, 3 . . .C}

Linear layer + softmax: ŷ = softmax (〈w , z〉+ b)
(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

Final decision rules

Here z ∈ Rd is high-level representation (outputs from neurons on
final layer).

y ∈ R
Linear layer: ŷ = 〈w , z〉+ b

y ∈ [0, 1]
Linear layer + sigmoid: ŷ = σ (〈w , z〉+ b)

y ∈ R++

Linear + exp: ŷ = e〈w ,z〉+b

Linear + softplus: ŷ = log
(
1 + e〈w ,z〉+b

)
y ∈ {1, 2, 3 . . .C}

Linear layer + softmax: ŷ = softmax (〈w , z〉+ b)
(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 31

Deep Learning

Loss functions

Regression
MSE, MAE

Classification
why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x , y ∼ p(x , y) = p(x)p(y | x)

p(y | x) — ?

Our neural network actually defines approximating distribution
q(y | x , θ). What to do next?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 31

Deep Learning

Loss functions

Regression
MSE, MAE

Classification

why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x , y ∼ p(x , y) = p(x)p(y | x)

p(y | x) — ?

Our neural network actually defines approximating distribution
q(y | x , θ). What to do next?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 31

Deep Learning

Loss functions

Regression
MSE, MAE

Classification
why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x , y ∼ p(x , y) = p(x)p(y | x)

p(y | x) — ?

Our neural network actually defines approximating distribution
q(y | x , θ). What to do next?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 31

Deep Learning

Loss functions

Regression
MSE, MAE

Classification
why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x , y ∼ p(x , y) = p(x)p(y | x)

p(y | x) — ?

Our neural network actually defines approximating distribution
q(y | x , θ). What to do next?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 31

Deep Learning

Loss functions

Regression
MSE, MAE

Classification
why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x , y ∼ p(x , y) = p(x)p(y | x)

p(y | x) — ?

Our neural network actually defines approximating distribution
q(y | x , θ). What to do next?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 31

Deep Learning

Losses derivation

Maximum likelihood estimation:∏
i

q(yi | xi , θ)→ max
θ

Divergence minimization:

D(p(y | x) ‖ q(yi | xi , θ))→ min
θ

Bayesian inference: seek for p(θ | X ,Y)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 31

Deep Learning

Losses derivation

Maximum likelihood estimation:∏
i

q(yi | xi , θ)→ max
θ

Divergence minimization:

D(p(y | x) ‖ q(yi | xi , θ))→ min
θ

Bayesian inference: seek for p(θ | X ,Y)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 31

Deep Learning

Losses derivation

Maximum likelihood estimation:∏
i

q(yi | xi , θ)→ max
θ

Divergence minimization:

D(p(y | x) ‖ q(yi | xi , θ))→ min
θ

Bayesian inference: seek for p(θ | X ,Y)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 31

Deep Learning

Divergences

Wasserstein distance
Jensen-Shannon divergence
Cramer distance
. . .

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 15 / 31

Deep Learning

Divergences

Kullback-Leibler divergence
Wasserstein distance
Jensen-Shannon divergence
Cramer distance
. . .

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 15 / 31

Deep Learning

Divergences

Kullback-Leibler divergence — the chosen one!
Wasserstein distance
Jensen-Shannon divergence
Cramer distance
. . .

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 15 / 31

Deep Learning

Kullback-Leibler Divergence

Definition

KL(p ‖ q) :=
∫
Y
p(y) log

p(y)

q(y)
dy

= Ep(y) log
p(y)

q(y)

Wonderful properties:
× p and q must share domain
× assymetric
× does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

Kullback-Leibler Divergence

Definition

KL(p ‖ q) :=
∫
Y
p(y) log

p(y)

q(y)
dy = Ep(y) log

p(y)

q(y)

Wonderful properties:
× p and q must share domain
× assymetric
× does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

Kullback-Leibler Divergence

Definition

KL(p ‖ q) :=
∫
Y
p(y) log

p(y)

q(y)
dy = Ep(y) log

p(y)

q(y)

Wonderful properties:
× p and q must share domain

× assymetric
× does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

Kullback-Leibler Divergence

Definition

KL(p ‖ q) :=
∫
Y
p(y) log

p(y)

q(y)
dy = Ep(y) log

p(y)

q(y)

Wonderful properties:
× p and q must share domain
× assymetric

× does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

Kullback-Leibler Divergence

Definition

KL(p ‖ q) :=
∫
Y
p(y) log

p(y)

q(y)
dy = Ep(y) log

p(y)

q(y)

Wonderful properties:
× p and q must share domain
× assymetric
× does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

Kullback-Leibler Divergence

Definition

KL(p ‖ q) :=
∫
Y
p(y) log

p(y)

q(y)
dy = Ep(y) log

p(y)

q(y)

Wonderful properties:
× p and q must share domain
× assymetric
× does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 31

Deep Learning

Motivation behind Kullback-Leibler

Recall our task:

KL(p(y | x) ‖ q(yi | xi , θ))→ min
θ

Using definition:

− Ep(y |x) log q(yi | xi , θ)→ min
θ

Const(θ) terms can be ignored!

Implicit expectation minimization

We do not know p(y | x), but ability to sample from it is enough!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 31

Deep Learning

Motivation behind Kullback-Leibler

Recall our task:

KL(p(y | x) ‖ q(yi | xi , θ))→ min
θ

Using definition:

Ep(y |x) log p(y | x)− Ep(y |x) log q(yi | xi , θ)→ min
θ

Const(θ) terms can be ignored!

Implicit expectation minimization

We do not know p(y | x), but ability to sample from it is enough!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 31

Deep Learning

Motivation behind Kullback-Leibler

Recall our task:

KL(p(y | x) ‖ q(yi | xi , θ))→ min
θ

Using definition:

Ep(y |x) log p(y | x)− Ep(y |x) log q(yi | xi , θ)→ min
θ

Const(θ) terms can be ignored!

Implicit expectation minimization

We do not know p(y | x), but ability to sample from it is enough!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 31

Deep Learning

Motivation behind Kullback-Leibler

Recall our task:

KL(p(y | x) ‖ q(yi | xi , θ))→ min
θ

Using definition:

− Ep(y |x) log q(yi | xi , θ)→ min
θ

Const(θ) terms can be ignored!

Implicit expectation minimization

We do not know p(y | x), but ability to sample from it is enough!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 31

Deep Learning

Motivation behind Kullback-Leibler

Recall our task:

KL(p(y | x) ‖ q(yi | xi , θ))→ min
θ

Using definition:

− Ep(y |x) log q(yi | xi , θ)→ min
θ

Const(θ) terms can be ignored!

Implicit expectation minimization

We do not know p(y | x), but ability to sample from it is enough!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 31

Deep Learning

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(x ,y) Loss(x , y , θ)→ min
θ

Proposition: ∇θL(f) = Ep(x ,y)∇θ Loss(x , y , θ)

Monte-Carlo estimation

Ep(x ,y)∇θ Loss(x , y , θ) ≈
1
M

M∑
i

∇θ Loss(xi , yi , θ)

where xi , yi are samples from p(x , y).
X an unbiased estimation (gives true gradient in expectation)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 31

Deep Learning

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(x ,y) Loss(x , y , θ)→ min
θ

Proposition: ∇θL(f) = Ep(x ,y)∇θ Loss(x , y , θ)

Monte-Carlo estimation

Ep(x ,y)∇θ Loss(x , y , θ) ≈
1
M

M∑
i

∇θ Loss(xi , yi , θ)

where xi , yi are samples from p(x , y).
X an unbiased estimation (gives true gradient in expectation)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 31

Deep Learning

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(x ,y) Loss(x , y , θ)→ min
θ

Proposition: ∇θL(f) = Ep(x ,y)∇θ Loss(x , y , θ)

Monte-Carlo estimation

Ep(x ,y)∇θ Loss(x , y , θ) ≈
1
M

M∑
i

∇θ Loss(xi , yi , θ)

where xi , yi are samples from p(x , y).

X an unbiased estimation (gives true gradient in expectation)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 31

Deep Learning

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(x ,y) Loss(x , y , θ)→ min
θ

Proposition: ∇θL(f) = Ep(x ,y)∇θ Loss(x , y , θ)

Monte-Carlo estimation

Ep(x ,y)∇θ Loss(x , y , θ) ≈
1
M

M∑
i

∇θ Loss(xi , yi , θ)

where xi , yi are samples from p(x , y).
X an unbiased estimation (gives true gradient in expectation)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 31

Deep Learning

Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 1 SGD
1: Initialize θ0 randomly
2: for t = 0, 1, 2, . . . do
3: Sample M pairs xi , yi ∼ p(x , y)
4: gt ← 1

M

∑M
i ∇θ Loss(xi , yi , θt)

5: θt+1 ← θt − αtgt
6: end for

SGD converges to local optima if

∑
t

αt = +∞
∑
t

α2
t < +∞

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 19 / 31

Deep Learning

Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 2 SGD
1: Initialize θ0 randomly
2: for t = 0, 1, 2, . . . do
3: Sample M pairs xi , yi ∼ p(x , y)
4: gt ← 1

M

∑M
i ∇θ Loss(xi , yi , θt)

5: θt+1 ← θt − αtgt
6: end for

SGD converges to local optima if

∑
t

αt = +∞
∑
t

α2
t < +∞

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 19 / 31

Deep Learning

Deep Learning
Unsupervised learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 20 / 31

Deep Learning

Autoencoder

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 21 / 31

Deep Learning

Autoencoder

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 21 / 31

Deep Learning

Shaping latent representation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 22 / 31

Deep Learning

Shaping latent representation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 22 / 31

Deep Learning

Shaping latent representation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 22 / 31

Deep Learning

VAE

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 23 / 31

Deep Learning

VAE

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 23 / 31

Deep Learning

VAE

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 23 / 31

Deep Learning

VAE

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 23 / 31

Deep Learning

Possible usage

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 / 31

Deep Learning

Possible usage

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 / 31

Deep Learning

Transfer learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 25 / 31

Deep Learning

Transfer learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 25 / 31

Deep Learning

Example: digits that are not1

1https://arxiv.org/abs/1606.04345
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 26 / 31

https://arxiv.org/abs/1606.04345

Deep Learning

Example: digits that are not1

1https://arxiv.org/abs/1606.04345
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 26 / 31

https://arxiv.org/abs/1606.04345

Deep Learning

Generative Adversarial Networks (GAN)

Training discriminator D:

Loss(D,G) :=

−Ex∼preal logD(x)−
−Ex∼psynth log(1−D(x)) → min

D

Training generator G :

Loss(D,G)→ max
G

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 27 / 31

Deep Learning

Generative Adversarial Networks (GAN)
Training discriminator D:

Loss(D,G) :=

−Ex∼preal logD(x)−
−Ex∼psynth log(1−D(x)) → min

D

Training generator G :

Loss(D,G)→ max
G

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 27 / 31

Deep Learning

Generative Adversarial Networks (GAN)
Training discriminator D:

Loss(D,G) :=

−Ex∼preal logD(x)−
−Ex∼psynth log(1−D(x)) → min

D

Training generator G :

Loss(D,G)→ max
G

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 27 / 31

Deep Learning

Generative Adversarial Networks (GAN)
Training discriminator D:

Loss(D,G) :=

−Ex∼preal logD(x)−
−Ex∼psynth log(1−D(x)) → min

D

Training generator G :

Loss(D,G)→ max
G

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 27 / 31

Deep Learning

Conditional GAN (cGAN)

Train psynth(x | c)
to imitate pdata(x | c)!

Ec∼p(c) Loss(D,G , c)→ min
D

Ec∼p(c) Loss(D,G , c)→ max
G

X condition can be of any
complexity!

X can be viewed as loss
function learning when
output is complex

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 28 / 31

Deep Learning

Conditional GAN (cGAN)

Train psynth(x | c)
to imitate pdata(x | c)!

Ec∼p(c) Loss(D,G , c)→ min
D

Ec∼p(c) Loss(D,G , c)→ max
G

X condition can be of any
complexity!

X can be viewed as loss
function learning when
output is complex

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 28 / 31

Deep Learning

Conditional GAN (cGAN)

Train psynth(x | c)
to imitate pdata(x | c)!

Ec∼p(c) Loss(D,G , c)→ min
D

Ec∼p(c) Loss(D,G , c)→ max
G

X condition can be of any
complexity!

X can be viewed as loss
function learning when
output is complex

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 28 / 31

Deep Learning

Conditional GAN (cGAN)

Train psynth(x | c)
to imitate pdata(x | c)!

Ec∼p(c) Loss(D,G , c)→ min
D

Ec∼p(c) Loss(D,G , c)→ max
G

X condition can be of any
complexity!

X can be viewed as loss
function learning when
output is complex

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 28 / 31

Deep Learning

cGAN: Example

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 29 / 31

Deep Learning

cGAN: Example

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 29 / 31

Deep Learning

Unpaired learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 30 / 31

Deep Learning

Unpaired learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 30 / 31

Deep Learning

Unpaired learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 30 / 31

Deep Learning

Unpaired learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 30 / 31

Deep Learning

CycleGAN: Example

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 31 / 31

	Deep Learning
	Basic idea
	Supervised learning
	Unsupervised learning

