# Sample Size Determination Methods for Classification 

A. Motrenko, V. Strijov<br>Moscow Institute of Physics and Technology

International Digital Processing Conference Barcelona, 2016.

## Sample size determination (SSD) problem

The goal is to design a method of sample size determination, that would accurately estimate the number of observations, required to obtain classification results given the model.

From (Sadia and Hossain, 2014)
"A good statistical study is one that is well designed and leads to a valid conclusion. "

- Sadia and Hossain, 2014. Contrast of Bayesian and Classical Sample Size Determination, Journal of Modern Applied Statistical Methods.
- Wang and Gelfand, 2002. A simulation-based approach to bayesian sample size determination for performance under a given model and for separating models. Statistical Science.
- Motrenko, Strijov, and Weber, 2014. Bayesian sample size estimation for logistic regression. Journal of Computational and Applied Mathematics


## Various cases of SSD problem

(1) No data is not available, $m=0$. Use the data generation hypothesis to derive sample size estimate $m^{*}$.
(2) A large amount of data is available, $m \rightarrow \infty$. Verify the criteria of interest directly on the observed data for various sample sizes $m$.
(3) Some data has been observed $0<m<m^{*}$. Adjust the data generation hypothesis according to the observed data before making predictions of $m^{*}$.

## Motivation: Classification of patients with Cardio-Vascular Disease

Consider two groups of patients: $y \in\{\mathrm{~A} 1, \mathrm{~A} 3\}$; each patient is described by a set of markers $\mathbf{x}$.

| Classes | Groups of patients | The patients have classification labels "A1" and"A3". |
| :---: | :---: | :---: |
| Objects $\longrightarrow$ | Patients | We have measured data for 14 patients in the group "A1" and 17 patients in the group "A3". |
| Features | Markers | We have 20 markers: $\mathrm{K}, \mathrm{L}, \mathrm{K} / \mathrm{M}$, L/M, K/N, K/O, L/O, K/P, L/P, K/Q, K/R, L/R, L/R/SA, L/T/SA, L/T/SO, U/V, U/W, U/X, U/Y, U/Z |

## Object-Feature (Patient-Marker) table, an extract

| Class | Patient name | K | L | $\mathrm{K} / \mathrm{M}$ | $\mathrm{L} / \mathrm{M}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | C001 | 58.3 | 16.7 | 0.52 | 0.00 |  |
| A1 | C004 | 40.2 | 6.0 | NaN | NaN |  |
| A1 | C005 | 54.3 | 13.1 | NaN | NaN |  |
| A1 | C008 | 48.7 | 9.8 | 0.05 | 0.02 | etc. |
| A3 | 023 | 46.6 | 21.2 | 0.40 | 0.08 |  |
| A3 | 026 | 50.7 | 26.2 | 0.12 | 0.00 |  |
| A3 | 027 | 45.3 | 24.5 | 0.05 | 0.02 |  |
| A3 | D037 | 46.3 | 13.1 | 1.23 | 0.13 |  |
|  |  |  |  | etc. |  |  |

How much more data do we need?

## Classification problem

Let $D_{m}=(\mathbf{y}, \mathbf{X})=\left\{\left(y_{i}, \mathbf{x}_{i}\right)\right\}_{i=1}^{m}$ denote a sample of $m$ i.i.d random variables generated by unknown distribution $\mathbb{P}(y, \mathbf{x}), D_{m} \sim \mathbb{P}^{m}$,

$$
\hat{y}=\underset{y \in[0,1]}{\arg \max } \mathbb{P}\left(y, \mathbf{x}_{\text {new }}\right) .
$$

Fix a parametric family

$$
\mathcal{F}=\{f(y, \mathbf{x}, \theta) \mid \theta \in \Theta\} \text { s. t. } \int_{\{0,1\} \times \mathbb{R}^{n}} f(y, \mathbf{x}, \theta) d y d \mathbf{x} \equiv 1, \theta \in \Theta
$$

The optimal $\hat{\theta}$ maximizes approximate likelihood

$$
\hat{\theta}=\underset{\theta \in \Theta}{\arg \max } \prod_{i=1}^{m} f\left(y_{i}, \mathbf{x}_{i}, \theta\right)
$$

Further inference is made with respect to $f(y, \mathbf{x}, \hat{\theta})$.

How many $m^{*}$ observations $\left(y_{i}, \mathbf{x}_{i}\right)$ do we need to obtain reasonable approximation of $\mathbb{P}(y, \mathbf{x})$ ?

## Sample size determination, frequentist approach

Let $\theta_{m}=\theta\left(D_{m}\right)$ be estimate of the parameter $\theta$.
To estimate sample size $m^{*}$, formulate null and alternative hypothesis:

$$
H_{0}: \theta \in A\left(\theta_{0}\right), \quad H_{1}: \theta \in A_{1}\left(\theta_{0}\right) .
$$

Let $U$ be the critical area for statistics $t_{m}$ for $H_{0}$ vs $H_{1}$.

Definition. The sample size $m^{*}$ defines
as follows: $m^{*}$ s.t. for $m \geq m^{*}$

$$
\begin{aligned}
& \mathrm{P}\left\{t_{m} \in U \mid H_{0}\right\} \geq 1-\alpha \\
& \text { and } \mathrm{P}\left\{t_{m} \in \bar{U} \mid H_{1}\right\} \leq \beta,
\end{aligned}
$$

where $\alpha$ and $\beta$ are type I and type II
 errors.

## Example

Let $\mathbb{P}(y)=y^{\theta}(1-y)^{(1-\theta)}$, which corresponds to $y \sim B(\theta)$,

$$
\theta_{m}=\frac{1}{m} \sum_{i=1}^{m} y_{i}
$$

Under $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta \neq \theta_{0}$ as $m \rightarrow \infty$

$$
t_{m}=\frac{\theta_{m}-\theta_{0}}{\sqrt{\theta_{0}\left(1-\theta_{0}\right)}} \sqrt{m} \rightarrow \mathcal{N}(0,1) \Rightarrow m^{*}=\frac{z_{\alpha / 2}^{2} \theta_{m}\left(1-\theta_{m}\right)}{\left(\theta_{m}-\theta_{0}\right)^{2}}
$$

where $z_{\alpha / 2}=F_{\mathcal{N}}^{-1}(1-\alpha)$. Alternatively, with $H_{1}: \theta=\theta_{1}$

$$
\begin{gathered}
t_{m} \left\lvert\, H_{1} \rightarrow \mathcal{N}\left(\theta_{1}-\theta_{0}, \frac{\theta_{1}\left(1-\theta_{1}\right)}{\theta_{0}\left(1-\theta_{0}\right)}\right)\right., \text { and } \\
m^{*}=\frac{\left(z_{1-\beta} \sqrt{\theta_{1}\left(1-\theta_{1}\right)}+z_{\alpha} \sqrt{\theta_{0}\left(1-\theta_{0}\right)}\right)^{2}}{\left(\theta_{1}-\theta_{0}\right)^{2}}
\end{gathered}
$$



## Statistical SSD methods

Method

1) $f(y, x ; \theta)=y^{\theta}(1-y)^{(1-\theta)}$,
2) $H_{0}: \theta=\theta_{0}, H_{1}: \theta=\theta_{1}$,
3) Statistics: $t_{m}=\frac{\bar{y}-\theta_{0}}{\sqrt{\theta_{0}\left(1-\theta_{0}\right)}} \sqrt{m}$
4) $f(y, x ; p)=y^{\theta}(1-y)^{(1-\theta)}$,
5) $H_{0}: \theta=\theta_{0}, H_{1}: \theta \neq \theta_{0}$,
6) Statistics: $t_{m}=\frac{\bar{y}-\theta_{0}}{\sqrt{\theta_{m}\left(1-\theta_{m}\right)}} \sqrt{m}$
7) $f(y, \mathbf{x} ; p)=y^{\theta}(1-y)^{(1-\theta)}$,
8) $H_{0}: \theta-\theta_{0} \leq \delta, H_{1}: \theta-\theta_{0}>\delta$,

$$
\begin{gathered}
m^{*}=\frac{\left(z_{1-\beta} \sqrt{\theta_{1}\left(1-\theta_{1}\right)}+z_{\alpha} \sqrt{\theta_{0}\left(1-\theta_{0}\right)}\right)^{2}}{\left(\theta_{1}-\theta_{0}\right)^{2}} \\
m^{*}=\frac{z_{\alpha / 2}^{2} \theta_{m}\left(1-\theta_{m}\right)}{\left(\theta_{m}-\theta_{0}\right)^{2}}
\end{gathered}
$$

3) Statistics: $t_{m}=\frac{\bar{y}-\theta_{0}}{\sqrt{\theta_{0}\left(1-\theta_{0}\right)}} \sqrt{m}$
4) $f(y, \mathbf{x}, \theta)=y^{\sigma\left(\mathbf{x}^{\top} \theta\right)}(1-y)^{\left(1-\sigma\left(\mathbf{x}^{\top} \theta\right)\right)}$,
5) $H_{0}: \theta_{j}=0, H_{1}: \theta_{j} \neq 0$,
6) Statistics: $t_{m}=2 \ln \frac{f\left(D_{m}, \theta\right)}{f\left(D_{m}, \theta_{0}\right)}$
7) $f(y, \mathbf{x}, \theta)=y^{\sigma\left(\mathrm{x}^{\top} \theta\right)}(1-y)^{\left(1-\sigma\left(\mathrm{x}^{\top} \theta\right)\right)}$,
8) $H_{0}: \theta_{j}=0, H_{1}: \theta_{j} \neq 0$,
3)Statistics: $t_{m}=\frac{w-w_{0}}{\sqrt{\operatorname{var}[\theta]}} \sqrt{m}$

$$
\begin{gathered}
m^{*}=\frac{\gamma_{m}}{\Delta^{*}}, \\
\text { where } \gamma_{m}: \chi_{n, \beta}^{2}\left(\gamma_{m}\right)=\chi_{p, \alpha}^{2}, \\
\Delta^{*}=\mathrm{E}_{\mathbf{X}}\left[-\mathbf{X}\left(\theta-\theta_{0}\right) \sigma(\mathbf{X} \theta)-\ln \left(\frac{\sigma\left(\theta_{0}\right)}{\sigma(\mathbf{X} \theta)}\right)\right]
\end{gathered}
$$

$$
m^{*}=\frac{\left(\sqrt{V_{1} z_{1-\beta}}-\sqrt{V_{0}} z_{\alpha / 2}\right)^{2}}{\left(\theta-\theta_{0}\right)^{2}}
$$

## Bayesian sample size determination

Instead of parameter estimates, focus on parameter distributions $p(\theta \mid D, f) \equiv p(\theta \mid D)$.

Let $p(\theta)$ be the prior for $\theta$, then $p\left(\theta \mid D_{m}\right) \propto f(y, \mathbf{x}, \theta) p(\theta)$.
The triplet $\langle\ell, \mathbb{P}, \xi\rangle$ defines the criterion $T(m)$ as

$$
T(m)=\mathbb{I}\left[\int L(\mathbf{y}, \mathbf{X}) \prod_{i=1}^{m} \mathbb{P}\left(y_{i}, \mathbf{x}_{i}\right) d y_{i} d \mathbf{x}_{i} \leq \xi\right]
$$

where $\mathbb{I}[\cdot]$ is the indicator function, $L(\mathbf{y}, \mathbf{X})$ is the expectation of $\ell(\mathbf{y}, \mathbf{X}, \theta)$ with respect to $p(\theta \mid \mathbf{y}, \mathbf{X})$.

Definition. The sample size $m^{*}$ is called sufficient according to posterior criterion $T$, if $T(m)$ holds for all $m \geq m^{*}$.

This definition allows $m^{*}=\infty$.

## Computation of $T(m)$

According to Bayes' rule, model approximation of $\mathbb{P}(y, \mathbf{x})$ is given by

$$
p\left(D_{m}\right)=\prod_{i=1}^{m} \int f\left(y_{i}, \mathbf{x}_{i}, \theta\right) p(\theta) d \theta
$$

Compute posterior criteria $T(m)$ using $p\left(D_{m}\right)$

$$
T(m)=\mathbb{I}\left[\int L(\mathbf{y}, \mathbf{X}) p\left(D_{m}\right) \prod_{i=1}^{m} d y_{i} d \mathbf{x}_{i} \leq \xi\right] .
$$

or use the sample mean instead of integration:

$$
T(m)=\mathbb{I}\left[\frac{1}{K} \sum_{k=1}^{K} L\left(\mathbf{y}_{k}, \mathbf{X}_{k}\right) \leq \xi\right]
$$

where $D_{m}^{(k)}=\left(\mathbf{y}_{k}, \mathbf{X}_{k}\right) \sim p^{m}\left(D_{m}\right)$.

Average posterior criteria: $T(m) \leftarrow\left\langle\ell, p\left(D_{m}\right), \xi\right\rangle$

- Average coverage criterion (ACC):

Ensure that coverage probability

$$
c_{d}\left(D_{m}\right)=\mathrm{P}\left(\theta \mid \theta \in A\left(D_{m}\right)\right)=\int_{\theta \in A\left(D_{m}\right)} p\left(\theta \mid D_{m}\right) d \theta
$$


exceeds the threshold: $T(m)=\mathbb{I}\left[\mathrm{E}_{D_{m}}\left(1-c_{d}(m)\right) \leq \xi\right]$.

- Average length criterion (ALC):

$$
T(m)=\mathbb{I}\left[\mathrm{E}_{D_{m}}\left|A\left(D_{m}\right)\right| \leq \xi\right]
$$

where $c_{d}\left(D_{m}\right)=\alpha$.


- Average posterior variance criterion (APVC):
$T(m)=\mathbb{I}\left[\mathrm{E}_{D_{m}} V\left(D_{m}\right) \leq \xi\right]$.


## Relation between ACC, ALC and APVC

From Chebyshev inequality:

$$
\mathrm{P}\left(\left|\theta-\mathrm{E}\left(\theta \mid D_{m}\right)\right|<d\right) \geq \frac{\operatorname{var}\left[\theta \mid D_{m}\right]}{4 d^{2}}
$$

which is equivalent to

$$
c_{d}\left(D_{m}\right) \geq 1-\frac{V\left(D_{m}\right)}{4 d\left(D_{m}\right)^{2}}
$$

| Relation | Fixed | Controled | Follows |
| :---: | :---: | :---: | :---: |
| $\mathrm{APVC} \Rightarrow \mathrm{ACC}$ | $d\left(D_{m}\right)=d$ | $V\left(D_{m}\right) \rightarrow 0$ | $c_{d}\left(D_{m}\right) \rightarrow 1$ |
| $\mathrm{APVC} \Rightarrow \mathrm{ALC}$ | $c_{d}\left(D_{m}\right)=1-\xi<1$ | $V\left(D_{m}\right) \rightarrow 0$ | $d\left(D_{m}\right) \rightarrow 0$ |
| $\mathrm{ACC} \Rightarrow \mathrm{APVC}$ | $d\left(D_{m}\right)=d$ | $c_{d}\left(D_{m}\right) \rightarrow 1$ | $V\left(D_{m}\right) \rightarrow 0$ |
| $\mathrm{ALC} \Rightarrow \mathrm{APVC}$ | $c_{d}\left(D_{m}\right)=1-\xi<1$ | $d\left(D_{m}\right) \rightarrow 0$ | $V\left(D_{m}\right) \rightarrow 0$ |

## Interaction between ACC, ALC and APVC

From Chebyshev inequlity:

$$
\mathrm{P}\left(\left|\theta-\mathrm{E}\left(\theta \mid D_{m}\right)\right|<d\right) \geq \frac{\operatorname{var}\left[\theta \mid D_{m}\right]}{4 d^{2}}
$$

which is equivalent to

$$
c_{d}\left(D_{m}\right) \geq 1-\frac{V\left(D_{m}\right)}{4 d\left(D_{m}\right)^{2}}
$$

| Relation | Fixed | Controled | Follows |
| :---: | :---: | :---: | :---: |
| $\mathrm{APVC} \Rightarrow \mathrm{ACC}$ | $d\left(D_{m}\right)=d$ | $V\left(D_{m}\right) \rightarrow 0$ | $c_{d}\left(D_{m}\right) \rightarrow 1$ |
| $\mathrm{APVC} \Rightarrow \mathrm{ALC}$ | $c_{d}\left(D_{m}\right)=1-\xi<1$ | $V\left(D_{m}\right) \rightarrow 0$ | $d\left(D_{m}\right) \rightarrow 0$ |
| $\mathrm{ACC} \Rightarrow \mathrm{APVC}$ | $d\left(D_{m}\right)=d$ | $c_{d}\left(D_{m}\right) \rightarrow 1$ | $V\left(D_{m}\right) \rightarrow 0$ |
| $\mathrm{ALC} \Rightarrow \mathrm{APVC}$ | $c_{d}\left(D_{m}\right)=1-\xi<1$ | $d\left(D_{m}\right) \rightarrow 0$ | $V\left(D_{m}\right) \rightarrow 0$ |

## Average KL-divergence criterion

Small variation of data sample $D_{m}$ leads to significant change of model parameters $\theta$ and posterior probability estimates $p\left(\theta \mid D_{m}\right)$.



Let $\mathrm{KL}(m)$ denote the expected KL -divergence

$$
D_{\mathrm{KL}}\left(p\left(\theta \mid D_{m}\right), p\left(\theta \mid D_{m-1}\right)\right)=\int p\left(\theta \mid D_{m}\right) \ln \frac{p\left(\theta \mid D_{m}\right)}{p\left(\theta \mid D_{m-1}\right)} d \theta
$$

between the posterior distributions:

$$
\mathrm{KL}(m)=\mathrm{E}_{D_{m}} D_{\mathrm{KL}}\left(p\left(\theta \mid D_{m}\right), p\left(\theta \mid D_{m-1}\right)\right) .
$$

## Motivation for average KL-divergence criterion

In Bayesian statistics, KL-divergence between posterior and prior is used as measure of information gain when prior $p(\theta)$ is updated to $p(\theta \mid D)$.

Consider a sequence of prior updates:

$$
\begin{aligned}
p(\theta) \rightarrow p\left(\theta \mid D_{1}\right) & \rightarrow \ldots \\
& p\left(\theta \mid D_{m-1}\right) \rightarrow p\left(\theta \mid D_{m}\right)
\end{aligned}
$$



The AKLC observes average information gain from $D_{m-1}$ to $D_{m}$ and such sample size $m^{*}$ that for all $m>m^{*}$ less then $\xi$ information gain is expected.

## Asymptotics of KL-divergence criterion

Consider empirical estimate $q_{m}(\theta)=\sum_{k=1}^{K} \delta\left(\theta-\theta_{m}^{k}\right)$ of posterior distribution $p\left(\theta \mid D_{m}\right)$.

If $\theta_{m}$ is an MLE at $D_{m}$, then, given consistency conditions hold,

$$
\theta_{m}-\theta_{0} \rightarrow^{P} \mathcal{N}\left(\mathbf{0}, I\left(\theta_{0}\right)\right) \text { and } q_{m}(\theta) \rightarrow F_{\mathcal{N}}\left(\theta \mid \mathbf{0}, I\left(\theta_{0}\right)\right)
$$

thus $\operatorname{KL}\left(p\left(\theta \mid D_{m}\right)\left|\mid p\left(\theta \mid D_{m-1}\right)\right) \approx\right.$

$$
\begin{aligned}
\approx \frac{1}{2}\left[\frac { 1 } { m } \left(\theta_{m}-\right.\right. & \left.\theta_{m-1}\right)^{\top} \mathbf{H}^{-1}\left(\theta_{m-1}\right)\left(\theta_{m}-\theta_{m-1}\right)- \\
& \left.-n+\operatorname{Tr}\left[\mathbf{H}^{-1}\left(\theta_{m-1}\right) \mathbf{H}\left(\theta_{m}\right)\right]+\ln \frac{\operatorname{det}\left(\mathbf{H}\left(\theta_{m-1}\right)\right)}{\operatorname{det}\left(\mathbf{H}\left(\theta_{m}\right)\right)}\right]
\end{aligned}
$$

As $m$ tends to infinity, $2 m \mathrm{KL}\left(p\left(\theta \mid D_{m}\right) \| p\left(\theta \mid D_{m-1}\right)\right) \rightarrow C \chi_{n}^{2}$, hence $2 m D_{\mathrm{KL}}(m) \rightarrow C n$

## Computation of average KL criterion

(1) Fix $\mathbb{P}, \mathcal{F}$ and the number $K$ of samples $D_{m}$, used to perform numerical integration.
(1) For each $m=1, \ldots, M$ generate $K$ samples $D_{m}^{(k)} \sim \mathbb{P}^{m}, k=1, \ldots, K$.
(2) For each $D_{m}^{(k)}$ generate a sample of posterior parameters $p\left(\theta \mid D_{m}^{(k)}\right)$ using $p(\theta)$ and $f(y, \mathbf{x}, \theta)$. Compute $T\left(D_{m}^{(k)}\right)$.
(3) Average the values of $T\left(D_{m}^{(k)}\right)$ over $k=\ldots 1, \ldots, K$.
$\mathbb{P}$ : data $(\mathbf{y}, \mathbf{X}), \mathbf{x} \in \mathbb{R}^{20}$ is linearly separable with $\mathbf{x}_{1: 5}=\left[x_{i 1}, \ldots, x_{i 5}\right]^{\top}$.

## Simple model:

$$
f(y, \mathbf{x}, \theta) \equiv f\left(y, x_{1}, \theta\right)
$$

Correct model:
$f(y, \mathbf{x}, \theta) \equiv f\left(y, \mathbf{x}_{1: 5}, \theta\right)$.
Complex model: $f(y, \mathbf{x}, \theta)$.


## Conclusion

- A new criterion for bayesian sample size determination was formulated.
- The proposed criterion is based on the minimizing divergence between posterior distributions of model parameters.
- The proposed criterion attempts to generalize the existing criteria.
- Convergence and applicability of the proposed criteria were demonstrated.

