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Sample size determination (SSD) problem

The goal is to design a method of sample size determination, that
would accurately estimate the number of observations, required to
obtain classification results given the model.

From (Sadia and Hossain, 2014)
“A good statistical study is one that is well designed and leads to a
valid conclusion. ”

• Sadia and Hossain, 2014. Contrast of Bayesian and Classical Sample Size
Determination, Journal of Modern Applied Statistical Methods.

• Wang and Gelfand, 2002. A simulation-based approach to bayesian
sample size determination for performance under a given model and for
separating models. Statistical Science.

• Motrenko, Strijov, and Weber, 2014. Bayesian sample size estimation for
logistic regression. Journal of Computational and Applied Mathematics
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Various cases of SSD problem

1 No data is not available, m = 0. Use the data generation
hypothesis to derive sample size estimate m∗.

2 A large amount of data is available, m→∞. Verify the criteria of
interest directly on the observed data for various sample sizes m.

3 Some data has been observed 0 < m < m∗. Adjust the data
generation hypothesis according to the observed data before
making predictions of m∗.

3 / 19



Motivation: Classification of patients with Cardio-Vascular Disease

Consider two groups of patients: y ∈ {A1,A3}; each patient is
described by a set of markers x.

Classes −→ Groups of
patients

The patients have classification labels
“A1” and“A3”.

Objects −→ Patients We have measured data for 14 patients
in the group “A1” and 17 patients in
the group “A3”.

Features−→ Markers We have 20 markers: K, L, K/M,
L/M, K/N, K/O, L/O, K/P, L/P,
K/Q, K/R, L/R, L/R/SA, L/T/SA,
L/T/SO, U/V, U/W, U/X, U/Y, U/Z
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Object–Feature (Patient–Marker) table, an extract

Class Patient name K L K/M L/M
A1 C001 58.3 16.7 0.52 0.00
A1 C004 40.2 6.0 NaN NaN
A1 C005 54.3 13.1 NaN NaN
A1 C008 48.7 9.8 0.05 0.02 etc.
A3 023 46.6 21.2 0.40 0.08
A3 026 50.7 26.2 0.12 0.00
A3 027 45.3 24.5 0.05 0.02
A3 D037 46.3 13.1 1.23 0.13

etc.

How much more data do we need?
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Classification problem
Let Dm = (y,X) = {(yi , xi )}mi=1 denote a sample of m i.i.d random
variables generated by unknown distribution P(y , x), Dm ∼ Pm,

ŷ = argmax
y∈[0,1]

P(y , xnew).

Fix a parametric family

F = {f (y , x, θ)| θ ∈ Θ} s. t.
∫

{0,1}×Rn

f (y , x, θ)dydx ≡ 1, θ ∈ Θ.

The optimal θ̂ maximizes approximate likelihood

θ̂ = argmax
θ∈Θ

m∏
i=1

f (yi , xi , θ).

Further inference is made with respect to f (y , x, θ̂).

How many m∗ observations (yi , xi ) do we need to obtain reasonable
approximation of P(y , x)?
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Sample size determination, frequentist approach

Let θm = θ(Dm) be estimate of the parameter θ.
To estimate sample size m∗, formulate null and alternative hypothesis:

H0 : θ ∈ A(θ0), H1 : θ ∈ A1(θ0).

Let U be the critical area for statistics tm for H0 vs H1.

Definition. The sample size m∗ defines
as follows: m∗ s.t. for m ≥ m∗

P{tm ∈ U|H0} ≥ 1− α

and P{tm ∈ Ū|H1} ≤ β,

where α and β are type I and type II
errors.
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Example

Let P(y) = yθ(1− y)(1−θ), which corresponds to y ∼ B(θ),

θm =
1

m

m∑
i=1

yi .

Under H0 : θ = θ0 against H1 : θ 6= θ0 as m→∞

tm =
θm − θ0√
θ0(1− θ0)

√
m→ N (0, 1)⇒ m∗ =

z2
α/2θm(1− θm)

(θm − θ0)2
,

where zα/2 = F−1
N (1− α). Alternatively, with H1 : θ = θ1

tm|H1 → N
(
θ1 − θ0,

θ1(1− θ1)

θ0(1− θ0)

)
, and

m∗ =

(
z1−β

√
θ1(1− θ1) + zα

√
θ0(1− θ0)

)2

(θ1 − θ0)2
.
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Statistical SSD methods
Method Expression for m∗

1) f (y , x; θ) = yθ(1− y)(1−θ),
2) H0 : θ = θ0,H1 : θ = θ1,
3) Statistics: tm = ȳ−θ0√

θ0(1−θ0)

√
m

m∗ =

(
z1−β
√
θ1(1−θ1)+zα

√
θ0(1−θ0)

)2

(θ1−θ0)2

1) f (y , x; p) = yθ(1− y)(1−θ),
2) H0 : θ = θ0,H1 : θ 6= θ0,
3) Statistics: tm = ȳ−θ0√

θm(1−θm)

√
m

m∗ =
z2
α/2θm(1−θm)

(θm−θ0)2

1) f (y , x; p) = yθ(1− y)(1−θ),
2) H0 : θ − θ0 ≤ δ,H1 : θ − θ0 > δ,
3) Statistics: tm = ȳ−θ0√

θ0(1−θ0)

√
m

m∗ =
(z1−β+zα/2)2θm(1−θm)

(|θm−θ0|−δ)2

1) f (y , x, θ) = yσ(xTθ)(1− y)(1−σ(xTθ)),
2) H0 : θj = 0,H1 : θj 6= 0,
3) Statistics: tm = 2 ln f (Dm,θ)

f (Dm,θ0)

m∗ = γm
∆∗ ,

where γm : χ2
n,β (γm) = χ2

p,α,

∆∗ = EX

[
−X(θ − θ0)σ(Xθ)− ln

(
σ(Xθ0)
σ(Xθ)

)]

1) f (y , x, θ) = yσ(xTθ)(1− y)(1−σ(xTθ)),
2) H0 : θj = 0,H1 : θj 6= 0,
3)Statistics: tm = w−w0√

var[θ]

√
m

m∗ =

(√
V1z1−β−

√
V0zα/2

)2

(θ−θ0)2
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Bayesian sample size determination

Instead of parameter estimates, focus on parameter distributions
p(θ|D, f ) ≡ p(θ|D).

Let p(θ) be the prior for θ, then p(θ|Dm) ∝ f (y , x, θ)p(θ).

The triplet 〈`,P, ξ〉 defines the criterion T (m) as

T (m) = I

[∫
L(y,X)

m∏
i=1

P(yi , xi )dyidxi ≤ ξ

]
,

where I[·] is the indicator function, L(y,X) is the expectation of
`(y,X, θ) with respect to p(θ|y,X).

Definition. The sample size m∗ is called sufficient according to
posterior criterion T , if T (m) holds for all m ≥ m∗.

This definition allows m∗ =∞.
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Computation of T (m)

According to Bayes’ rule, model approximation of P(y , x) is given by

p(Dm) =
m∏
i=1

∫
f (yi , xi , θ)p(θ)dθ.

Compute posterior criteria T (m) using p(Dm)

T (m) = I

[∫
L(y,X)p(Dm)

m∏
i=1

dyidxi ≤ ξ

]
.

or use the sample mean instead of integration:

T (m) = I

[
1

K

K∑
k=1

L(yk ,Xk) ≤ ξ

]
,

where D
(k)
m = (yk ,Xk) ∼ pm(Dm).
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Average posterior criteria: T (m)← 〈`, p(Dm), ξ〉

• Average coverage criterion (ACC):

Ensure that coverage probability

cd(Dm) = P(θ|θ ∈ A(Dm)) =

∫
θ∈A(Dm)

p(θ|Dm)dθ

exceeds the threshold: T (m) = I[EDm(1− cd(m)) ≤ ξ].

• Average length criterion (ALC):
T (m) = I[EDm |A(Dm)| ≤ ξ],

where cd(Dm) = α.

• Average posterior variance criterion (APVC):
T (m) = I[EDmV (Dm) ≤ ξ].
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Relation between ACC, ALC and APVC

From Chebyshev inequality:

P
(
|θ − E(θ|Dm)| < d

)
≥ var[θ|Dm]

4d2
,

which is equivalent to

cd(Dm) ≥ 1− V (Dm)

4d(Dm)2
.

Relation Fixed Controled Follows

APVC ⇒ ACC d(Dm) = d V (Dm)→ 0 cd(Dm)→ 1

APVC ⇒ ALC cd(Dm) = 1− ξ < 1 V (Dm)→ 0 d(Dm)→ 0

ACC ⇒ APVC d(Dm) = d cd(Dm)→ 1 V (Dm)→ 0

ALC ⇒ APVC cd(Dm) = 1− ξ < 1 d(Dm)→ 0 V (Dm)→ 0
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Interaction between ACC, ALC and APVC

From Chebyshev inequlity:

P
(
|θ − E(θ|Dm)| < d

)
≥ var[θ|Dm]

4d2
,

which is equivalent to

cd(Dm) ≥ 1− V (Dm)

4d(Dm)2
.

Relation Fixed Controled Follows

APVC ⇒ ACC d(Dm) = d V (Dm)→ 0 cd(Dm)→ 1

APVC ⇒ ALC cd(Dm) = 1− ξ < 1 V (Dm)→ 0 d(Dm)→ 0

ACC ⇒ APVC d(Dm) = d cd(Dm)→ 1 V (Dm)→ 0

ALC ⇒ APVC cd(Dm) = 1− ξ < 1 d(Dm)→ 0 V (Dm)→ 0
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Average KL-divergence criterion

Small variation of data sample Dm leads to significant change of
model parameters θ and posterior probability estimates p(θ|Dm).
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Let KL(m) denote the expected KL-divergence

DKL
(
p(θ|Dm), p(θ|Dm−1)

)
=

∫
p(θ|Dm) ln

p(θ|Dm)

p(θ|Dm−1)
dθ

between the posterior distributions:

KL(m) = EDmDKL
(
p(θ|Dm), p(θ|Dm−1)

)
.
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Motivation for average KL-divergence criterion

In Bayesian statistics, KL-divergence between posterior and prior is
used as measure of information gain when prior p(θ) is updated to
p(θ|D).

Consider a sequence of prior updates:

p(θ)→ p(θ|D1)→ . . .

p(θ|Dm−1)→ p(θ|Dm)

The AKLC observes average information gain from Dm−1 to Dm

and such sample size m∗ that for all m > m∗ less then ξ
information gain is expected.
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Asymptotics of KL-divergence criterion
Consider empirical estimate qm(θ) =

∑K
k=1 δ(θ − θkm) of posterior

distribution p(θ|Dm).

If θm is an MLE at Dm, then, given consistency conditions hold,

θm − θ0 →P N
(
0, I (θ0)

)
and qm(θ)→ FN

(
θ|0, I (θ0)

)
,

thus KL(p(θ|Dm)||p(θ|Dm−1)) ≈

≈ 1

2

[
1

m
(θm − θm−1)

TH−1(θm−1)(θm − θm−1)−

−n + Tr[H−1(θm−1)H(θm)] + ln
det
(
H(θm−1)

)
det
(
H(θm)

) ]

As m tends to infinity,
2mKL

(
p(θ|Dm)||p(θ|Dm−1)

)
→ Cχ2

n,

hence 2mDKL(m)→ Cn
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Computation of average KL criterion

0 Fix P, F and the number K of samples Dm, used to perform numerical integration.

1 For each m = 1, . . . ,M generate K samples D
(k)
m ∼ Pm, k = 1, . . . ,K .

2 For each D
(k)
m generate a sample of posterior parameters p(θ|D(k)

m ) using p(θ) and
f (y , x, θ). Compute T (D

(k)
m ).

3 Average the values of T (D
(k)
m ) over k = . . . 1, . . . ,K .

P: data (y,X), x ∈ R20 is linearly separable with x1:5 = [xi1, . . . , xi5]T.

Simple model:
f (y , x, θ) ≡ f (y , x1, θ).
Correct model:
f (y , x, θ) ≡ f (y , x1:5, θ).
Complex model: f (y , x, θ).
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Conclusion

• A new criterion for bayesian sample size determination was
formulated.

• The proposed criterion is based on the minimizing divergence
between posterior distributions of model parameters.

• The proposed criterion attempts to generalize the existing
criteria.

• Convergence and applicability of the proposed criteria were
demonstrated.
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