# Sample Size Determination Methods for Classification

A. Motrenko, V. Strijov

Moscow Institute of Physics and Technology

International Digital Processing Conference Barcelona, 2016.

## Sample size determination (SSD) problem

**The goal** is to design a method of sample size determination, that would accurately estimate the number of observations, required to obtain classification results given the model.

## From (Sadia and Hossain, 2014)

"A good statistical study is one that is well designed and leads to a valid conclusion. "

- Sadia and Hossain, 2014. Contrast of Bayesian and Classical Sample Size Determination, Journal of Modern Applied Statistical Methods.
- Wang and Gelfand, 2002. A simulation-based approach to bayesian sample size determination for performance under a given model and for separating models. Statistical Science.
- Motrenko, Strijov, and Weber, 2014. Bayesian sample size estimation for logistic regression. Journal of Computational and Applied Mathematics

## Various cases of SSD problem

- **1** No data is not available, m = 0. Use the *data generation hypothesis* to derive sample size estimate  $m^*$ .
- ② A large amount of data is available, m→∞. Verify the criteria of interest directly on the observed data for various sample sizes m.
- Some data has been observed 0 < m < m<sup>\*</sup>. Adjust the data generation hypothesis according to the observed data before making predictions of m<sup>\*</sup>.

Motivation: Classification of patients with Cardio-Vascular Disease

Consider two groups of patients:  $y \in \{A1, A3\}$ ; each patient is described by a set of markers **x**.

| $Classes \longrightarrow Groups \ of$ | The patients have classification labels |
|---------------------------------------|-----------------------------------------|
| patients                              | "A1" and"A3".                           |
| $Objects \longrightarrow Patients$    | We have measured data for 14 patients   |
|                                       | in the group "A1" and 17 patients in    |
|                                       | the group "A3".                         |
| $Features \longrightarrow Markers$    | We have 20 markers: K, L, K/M,          |
|                                       | L/M, K/N, K/O, L/O, K/P, L/P,           |
|                                       | K/Q, K/R, L/R, L/R/SA, L/T/SA,          |
|                                       | L/T/SO, U/V, U/W, U/X, U/Y, U/Z         |

## Object-Feature (Patient-Marker) table, an extract

| Class | Patient name | K    | L    | K/M  | L/M  |      |
|-------|--------------|------|------|------|------|------|
| A1    | C001         | 58.3 | 16.7 | 0.52 | 0.00 |      |
| A1    | C004         | 40.2 | 6.0  | NaN  | NaN  |      |
| A1    | C005         | 54.3 | 13.1 | NaN  | NaN  |      |
| A1    | C008         | 48.7 | 9.8  | 0.05 | 0.02 | etc. |
| A3    | 023          | 46.6 | 21.2 | 0.40 | 0.08 |      |
| A3    | 026          | 50.7 | 26.2 | 0.12 | 0.00 |      |
| A3    | 027          | 45.3 | 24.5 | 0.05 | 0.02 |      |
| A3    | D037         | 46.3 | 13.1 | 1.23 | 0.13 |      |
|       |              |      |      | etc. |      |      |

How much more data do we need?

**Classification problem** 

Let  $D_m = (\mathbf{y}, \mathbf{X}) = \{(y_i, \mathbf{x}_i)\}_{i=1}^m$  denote a sample of m i.i.d random variables generated by unknown distribution  $\mathbb{P}(y, \mathbf{x})$ ,  $D_m \sim \mathbb{P}^m$ ,

$$\hat{y} = \operatorname*{arg\,max}_{y \in [0,1]} \mathbb{P}(y, \mathbf{x}_{\mathsf{new}}).$$

Fix a parametric family

$$\mathcal{F} = \{f(y, \mathbf{x}, heta)| \ heta \in \Theta\} ext{ s. t. } \int_{\{0,1\} imes \mathbb{R}^n} f(y, \mathbf{x}, heta) dy d\mathbf{x} \equiv 1, \ heta \in \Theta.$$

The optimal  $\hat{\theta}$  maximizes approximate likelihood

$$\hat{\theta} = \operatorname*{arg\,max}_{\theta \in \Theta} \prod_{i=1}^{m} f(y_i, \mathbf{x}_i, \theta).$$

Further inference is made with respect to  $f(y, \mathbf{x}, \hat{\theta})$ .

How many  $m^*$  observations  $(y_i, \mathbf{x}_i)$  do we need to obtain reasonable approximation of  $\mathbb{P}(y, \mathbf{x})$ ?

## Sample size determination, frequentist approach

Let  $\theta_m = \theta(D_m)$  be estimate of the parameter  $\theta$ . To estimate sample size  $m^*$ , formulate null and alternative hypothesis:

$$H_0: \theta \in A(\theta_0), \quad H_1: \theta \in A_1(\theta_0).$$

Let U be the critical area for statistics  $t_m$  for  $H_0$  vs  $H_1$ .

**Definition**. The sample size  $m^*$  defines as follows:  $m^*$  s.t. for  $m \ge m^*$ 

$$\mathsf{P}\{t_m \in U | H_0\} \ge 1 - \alpha$$

and  $P\{t_m \in \overline{U}|H_1\} \leq \beta$ ,

where  $\alpha$  and  $\beta$  are type I and type II errors.



#### Example

Let  $\mathbb{P}(y) = y^{\theta}(1-y)^{(1-\theta)}$ , which corresponds to  $y \sim B(\theta)$ ,

$$\theta_m = \frac{1}{m} \sum_{i=1}^m y_i.$$

Under  $H_0$ :  $\theta = \theta_0$  against  $H_1$ :  $\theta \neq \theta_0$  as  $m \to \infty$ 

$$t_m = rac{ heta_m - heta_0}{\sqrt{ heta_0(1 - heta_0)}} \sqrt{m} o \mathcal{N}(0, 1) \Rightarrow m^* = rac{z_{lpha/2}^2 heta_m (1 - heta_m)}{( heta_m - heta_0)^2},$$

where  $z_{\alpha/2} = F_{\mathcal{N}}^{-1}(1-\alpha)$ . Alternatively, with  $H_1$ :  $\theta = \theta_1$ 

$$t_m | \mathcal{H}_1 
ightarrow \mathcal{N}\left( heta_1 - heta_0, rac{ heta_1(1 - heta_1)}{ heta_0(1 - heta_0)}
ight), ext{ and} \ m^* = rac{\left(z_{1-eta}\sqrt{ heta_1(1 - heta_1)} + z_lpha\sqrt{ heta_0(1 - heta_0)}
ight)^2}{( heta_1 - heta_0)^2}.$$



## Statistical SSD methods

| Method                                                                                                                                                                                                                                                         | Expression for $m^*$                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) $f(y, \mathbf{x}; \theta) = y^{\theta} (1 - y)^{(1 - \theta)}$ ,<br>2) $H_0: \theta = \theta_0, H_1: \theta = \theta_1$ ,<br>3) Statistics: $t_m = \frac{\overline{y} - \theta_0}{\sqrt{\theta_0 (1 - \theta_0)}} \sqrt{m}$                                 | $m^{*} = rac{\left(z_{1-eta}\sqrt{	heta_{1}(1-	heta_{1})}+z_{lpha}\sqrt{	heta_{0}(1-	heta_{0})} ight)^{2}}{(	heta_{1}-	heta_{0})^{2}}$                                                                                                                                                                              |
| 1) $f(y, \mathbf{x}; p) = y^{\theta} (1 - y)^{(1-\theta)}$ ,<br>2) $H_0: \theta = \theta_0, H_1: \theta \neq \theta_0$ ,<br>3) Statistics: $t_m = \frac{\overline{y} - \theta_0}{\sqrt{\theta_m (1 - \theta_m)}} \sqrt{m}$                                     | $m^*=rac{z^2_{lpha/2}	heta_m(1-	heta_m)}{(	heta_m-	heta_0)^2}$                                                                                                                                                                                                                                                      |
| 1) $f(y, \mathbf{x}; \boldsymbol{\rho}) = y^{\theta} (1 - y)^{(1 - \theta)}$ ,<br>2) $H_0: \theta - \theta_0 \leq \delta, H_1: \theta - \theta_0 > \delta$ ,<br>3) Statistics: $t_m = \frac{\overline{y} - \theta_0}{\sqrt{\theta_0 (1 - \theta_0)}} \sqrt{m}$ | $m^{*} = rac{(z_{1-eta}+z_{lpha/2})^{2}	heta_{m}(1-	heta_{m})}{( 	heta_{m}-	heta_{0} -\delta)^{2}}$                                                                                                                                                                                                                 |
| 1) $f(y, \mathbf{x}, \theta) = y^{\sigma(\mathbf{x}^{T}\theta)} (1-y)^{(1-\sigma(\mathbf{x}^{T}\theta))}$ ,<br>2) $H_0: \theta_j = 0, H_1: \theta_j \neq 0$ ,<br>3) Statistics: $t_m = 2 \ln \frac{f(D_m, \theta)}{f(D_m, \theta_0)}$                          | $\begin{split} \boldsymbol{m}^{*} &= \frac{\gamma_{m}}{\Delta^{*}},\\ \text{where } \gamma_{m}: \ \chi^{2}_{n,\beta}(\gamma_{m}) = \chi^{2}_{p,\alpha},\\ \Delta^{*} &= E_{\mathbf{X}}\left[-X(\theta - \theta_{0})\sigma(X\theta) - \ln\left(\frac{\sigma(X\theta_{0})}{\sigma(X\theta)}\right)\right] \end{split}$ |
| 1) $f(y, \mathbf{x}, \theta) = y^{\sigma(\mathbf{x}^{T}\theta)} (1 - y)^{(1 - \sigma(\mathbf{x}^{T}\theta))}$ ,<br>2) $H_0: \theta_j = 0, H_1: \theta_j \neq 0$ ,<br>3) Statistics: $t_m = \frac{w - w_0}{\sqrt{\operatorname{var}[\theta]}} \sqrt{m}$         | $m^{*} = \frac{\left(\sqrt{V_{1}}z_{1-\beta} - \sqrt{V_{0}}z_{\alpha/2}\right)^{2}}{(\theta - \theta_{0})^{2}}$ 9/19                                                                                                                                                                                                 |

#### Bayesian sample size determination

Instead of parameter estimates, focus on parameter distributions  $p(\theta|D, f) \equiv p(\theta|D)$ .

Let  $p(\theta)$  be the prior for  $\theta$ , then  $p(\theta|D_m) \propto f(y, \mathbf{x}, \theta)p(\theta)$ .

The triplet  $\langle \ell, \mathbb{P}, \xi \rangle$  defines the criterion T(m) as

$$\mathcal{T}(m) = \mathbb{I}\left[\int L(\mathbf{y}, \mathbf{X}) \prod_{i=1}^m \mathbb{P}(y_i, \mathbf{x}_i) dy_i d\mathbf{x}_i \leq \xi\right],$$

where  $\mathbb{I}[\cdot]$  is the indicator function,  $L(\mathbf{y}, \mathbf{X})$  is the expectation of  $\ell(\mathbf{y}, \mathbf{X}, \theta)$  with respect to  $p(\theta|\mathbf{y}, \mathbf{X})$ .

**Definition**. The sample size  $m^*$  is called *sufficient* according to posterior criterion T, if T(m) holds for all  $m \ge m^*$ .

This definition allows  $m^* = \infty$ .

#### Computation of T(m)

According to Bayes' rule, model approximation of  $\mathbb{P}(y, \mathbf{x})$  is given by

$$p(D_m) = \prod_{i=1}^m \int f(y_i, \mathbf{x}_i, \theta) p(\theta) d\theta.$$

Compute posterior criteria T(m) using  $p(D_m)$ 

$$T(m) = \mathbb{I}\left[\int L(\mathbf{y}, \mathbf{X}) p(D_m) \prod_{i=1}^m dy_i d\mathbf{x}_i \leq \xi\right].$$

or use the sample mean instead of integration:

$$T(m) = \mathbb{I}\left[\frac{1}{K}\sum_{k=1}^{K}L(\mathbf{y}_k,\mathbf{X}_k) \leq \xi\right],$$

where  $D_m^{(k)} = (\mathbf{y}_k, \mathbf{X}_k) \sim p^m(D_m)$ .

Average posterior criteria:  $T(m) \leftarrow \langle \ell, p(D_m), \xi \rangle$ 

• Average coverage criterion (ACC):

Ensure that coverage probability

$$c_d(D_m) = \mathsf{P}( heta| heta \in A(D_m)) = \int\limits_{ heta \in A(D_m)} p( heta|D_m) d heta$$



exceeds the threshold:  $T(m) = \mathbb{I}[\mathsf{E}_{D_m}(1 - c_d(m)) \leq \xi].$ 

• Average length criterion (ALC):  $T(m) = \mathbb{I}[\mathsf{E}_{D_m}|A(D_m)| \leq \xi],$ where  $c_d(D_m) = \alpha$ .



• Average posterior variance criterion (APVC):  $T(m) = \mathbb{I}[\mathsf{E}_{D_m} V(D_m) \leq \xi].$ 

## Relation between ACC, ALC and APVC

From Chebyshev inequality:

$$\mathsf{P}(| heta - \mathsf{E}( heta|D_m)| < d) \geq rac{\mathsf{var}[ heta|D_m]}{4d^2},$$

which is equivalent to

$$c_d(D_m) \geq 1 - rac{V(D_m)}{4d(D_m)^2}.$$

| Relation               | Fixed                    | Controled                | Follows                  |
|------------------------|--------------------------|--------------------------|--------------------------|
| $APVC \Rightarrow ACC$ | $d(D_m) = d$             | $V(D_m) \rightarrow 0$   | $c_d(D_m) \rightarrow 1$ |
| $APVC \Rightarrow ALC$ | $c_d(D_m) = 1 - \xi < 1$ | $V(D_m)  ightarrow 0$    | $d(D_m)  ightarrow 0$    |
| $ACC \Rightarrow APVC$ | $d(D_m) = d$             | $c_d(D_m) \rightarrow 1$ | $V(D_m)  ightarrow 0$    |
| $ALC \Rightarrow APVC$ | $c_d(D_m) = 1 - \xi < 1$ | $d(D_m)  ightarrow 0$    | $V(D_m)  ightarrow 0$    |

## Interaction between ACC, ALC and APVC

From Chebyshev inequlity:

$$\mathsf{P}(| heta - \mathsf{E}( heta|D_m)| < d) \geq rac{\mathsf{var}[ heta|D_m]}{4d^2},$$

which is equivalent to

$$c_d(D_m) \geq 1 - rac{V(D_m)}{4d(D_m)^2}.$$

| Relation               | Fixed                    | Controled                | Follows                  |
|------------------------|--------------------------|--------------------------|--------------------------|
| $APVC \Rightarrow ACC$ | $d(D_m) = d$             | $V(D_m)  ightarrow 0$    | $c_d(D_m) \rightarrow 1$ |
| $APVC \Rightarrow ALC$ | $c_d(D_m) = 1 - \xi < 1$ | $V(D_m) \rightarrow 0$   | $d(D_m)  ightarrow 0$    |
| $ACC \Rightarrow APVC$ | $d(D_m) = d$             | $c_d(D_m) \rightarrow 1$ | $V(D_m)  ightarrow 0$    |
| $ALC \Rightarrow APVC$ | $c_d(D_m) = 1 - \xi < 1$ | $d(D_m)  ightarrow 0$    | $V(D_m)  ightarrow 0$    |

#### Average KL-divergence criterion

Small variation of data sample  $D_m$  leads to significant change of model parameters  $\theta$  and posterior probability estimates  $p(\theta|D_m)$ .



Let KL(m) denote the expected KL-divergence

$$D_{\mathsf{KL}}ig( p( heta|D_m), p( heta|D_{m-1})ig) = \int p( heta|D_m) \ln rac{p( heta|D_m)}{p( heta|D_{m-1})} d heta$$

between the posterior distributions:

$$\mathsf{KL}(m) = \mathsf{E}_{D_m} D_{\mathsf{KL}} \big( p(\theta|D_m), p(\theta|D_{m-1}) \big).$$

## Motivation for average KL-divergence criterion

In Bayesian statistics, KL-divergence between posterior and prior is used as measure of information gain when prior  $p(\theta)$  is updated to  $p(\theta|D)$ .

Consider a sequence of prior updates:

$$p( heta) 
ightarrow p( heta|D_1) 
ightarrow \ldots \ p( heta|D_{m-1}) 
ightarrow p( heta|D_m)$$



The AKLC observes average information gain from  $D_{m-1}$  to  $D_m$ and such sample size  $m^*$  that for all  $m > m^*$  less then  $\xi$ information gain is expected.

#### Asymptotics of KL-divergence criterion

Consider empirical estimate  $q_m(\theta) = \sum_{k=1}^{K} \delta(\theta - \theta_m^k)$  of posterior distribution  $p(\theta|D_m)$ .

If  $\theta_m$  is an MLE at  $D_m$ , then, given consistency conditions hold,

$$\begin{aligned} \theta_m - \theta_0 &\to^P \mathcal{N}(\mathbf{0}, I(\theta_0)) \text{ and } q_m(\theta) \to F_{\mathcal{N}}(\theta|\mathbf{0}, I(\theta_0)), \\ \text{thus } \mathsf{KL}(p(\theta|D_m)||p(\theta|D_{m-1})) \approx \\ &\approx \frac{1}{2} \left[ \frac{1}{m} (\theta_m - \theta_{m-1})^\mathsf{T} \mathsf{H}^{-1}(\theta_{m-1})(\theta_m - \theta_{m-1}) - \right. \\ &\left. -n + \mathsf{Tr}[\mathsf{H}^{-1}(\theta_{m-1})\mathsf{H}(\theta_m)] + \ln \frac{\det(\mathsf{H}(\theta_{m-1}))}{\det(\mathsf{H}(\theta_m))} \right] \end{aligned}$$

As *m* tends to infinity,  $2m \text{KL}(p(\theta|D_m)||p(\theta|D_{m-1})) \rightarrow C\chi^2_n$ 

hence  $2mD_{\mathsf{KL}}(m) \rightarrow Cn$ 



#### Computation of average KL criterion

**0** Fix  $\mathbb{P}$ ,  $\mathcal{F}$  and the number K of samples  $D_m$ , used to perform numerical integration.

**1** For each m = 1, ..., M generate K samples  $D_m^{(k)} \sim \mathbb{P}^m$ , k = 1, ..., K.

Prove each D<sup>(k)</sup><sub>m</sub> generate a sample of posterior parameters p(θ|D<sup>(k)</sup><sub>m</sub>) using p(θ) and f(y, x, θ). Compute T(D<sup>(k)</sup><sub>m</sub>).

**3** Average the values of  $T(D_m^{(k)})$  over  $k = \ldots 1, \ldots, K$ .

 $\mathbb{P}$ : data (**y**, **X**), **x**  $\in \mathbb{R}^{20}$  is linearly separable with  $\mathbf{x}_{1:5} = [x_{i1}, \dots, x_{i5}]^{\mathsf{T}}$ .

Simple model:  $f(y, \mathbf{x}, \theta) \equiv f(y, x_1, \theta).$ Correct model:  $f(y, \mathbf{x}, \theta) \equiv f(y, \mathbf{x}_{1:5}, \theta).$ Complex model:  $f(y, \mathbf{x}, \theta).$ 



## Conclusion

- A new criterion for bayesian sample size determination was formulated.
- The proposed criterion is based on the minimizing divergence between posterior distributions of model parameters.
- The proposed criterion attempts to generalize the existing criteria.
- Convergence and applicability of the proposed criteria were demonstrated.