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Аннотация

Данная бакалаврская диссертация представляет собой статью «Stochastic
spectral and conjugate descent methods» за авторством Питера Рихтарика, Дмит-
рия Ковалева, Эдуарда Горбунова и Эльнура Гасанова [8]. Современные методы
решения оптимизационных задач большой размерности являются вариантами
рандомизированного покомпонетного спуска. В данной работе представлен фун-
даментально новый тип ускорения рандомизированного покомпонетного спуска,
основанный на пополнении набора координатных направлений несколькими спек-
тральными или сопряженными направлениями. С ростом числа дополнительных
направлений скорость сходимости метода улучшается и интерполируется между
линейной скоростью сходимости рандомизированного покомпонетного спуска
и линейной скоростью сходимости, не зависящей от числа обусловленности.
Также рассматриваются неточные варианты данных методов для случая, когда
известны приближения спектральных и сопряженных направлений. Вышеука-
занные исследования мотивированы несколькими отрицательными результатами,
которые подчеркивают ограничения рандомизированного покомпонентного спус-
ка с выборкой по значимости.
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Abstract

This bachelor thesis is a paper «Stochastic Spectral and Conjugate Descent
Methods» written by Peter Richtárik, Dmitry Kovalev, Eduard Gorbunov and Elnur
Gasanov [8]. The state-of-the-art methods for solving optimization problems in big
dimensions are variants of randomized coordinate descent (RCD). In this paper
we introduce a fundamentally new type of acceleration strategy for RCD based on
the augmentation of the set of coordinate directions by a few spectral or conjugate
directions. As we increase the number of extra directions to be sampled from, the
rate of the method improves, and interpolates between the linear rate of RCD and a
linear rate independent of the condition number. We develop and analyze also inexact
variants of these methods where the spectral and conjugate directions are allowed to
be approximate only. We motivate the above development by proving several negative
results which highlight the limitations of RCD with importance sampling.

2



Table of contents

1 Introduction 5
1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Randomized coordinate descent . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Stochastic descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Stochastic spectral descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Stochastic conjugate descent . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Optimizing probabilities in RCD . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Interpolating between RCD and SSD . . . . . . . . . . . . . . . . . . . . . 8
1.8 Inexact Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Stochastic Descent 9
2.1 Stochastic Spectral Descent . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Stochastic Conjugate Descent . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Randomized Coordinate Descent . . . . . . . . . . . . . . . . . . . . . . . 11

3 Interpolating Between RCD and SSD 13
3.1 SSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Mini-batch SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Mini-batch SSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Experiments 15
4.1 Stochastic spectral coordinate descent (SSCD) . . . . . . . . . . . . . . . . 15
4.2 Mini-batch SSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Matrix with 10 billion entries . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Extensions 18

A Extra Experiments 21
A.1 Performance on SSCD on A with three clusters eigenvalues . . . . . . . . . 21
A.2 Exponentially decaying eigenvalues . . . . . . . . . . . . . . . . . . . . . . 22

B Proofs 22
B.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B.4 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B.5 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.6 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.7 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.8 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.9 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.10 Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

C Results mentioned informally in the paper 31
C.1 Adding “largest” eigenvectors does not help . . . . . . . . . . . . . . . . . . 31
C.2 Stochastic Conjugate Descent . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



D Inexact Stochastic Conjuagate Descent 32
D.1 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
D.2 Rate of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
D.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
D.4 Approximate solution without iterative methods . . . . . . . . . . . . . . . 35

E Inexact SSD: a method that is not a special case of stochastic descent 36
E.1 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
E.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4



1 Introduction
An increasing array of learning and training tasks reduce to optimization problem in very
large dimensions. The state-of-the-art algorithms in this regime are based on randomized
coordinate descent (RCD). Various acceleration strategies were proposed for RCD in the
literature in recent years, based on techniques such as Nesterov’s momentum [13, 10, 5, 1,
15], heavy ball momentum [17, 12], importance sampling [14, 20], adaptive sampling [4],
random permutations [9], greedy rules [16], mini-batching [21], and locality breaking [22].
These techniques enable faster rates in theory and practice.

In this paper we introduce a fundamentally new type of acceleration strategy for RCD
which relies on the idea of enriching the set of (unit) coordinate directions {e1, e2, . . . , en}
in Rn, which are used in RCD as directions of descent, via the addition of a few spectral or
conjugate directions. The algorithms we develop and analyze in this paper randomize over
this enriched larger set of directions.

1.1 The problem

For simplicity1, we focus on quadratic minimization

min
x∈Rn

f(x) =
1

2
x>Ax− b>x, (1)

where A is an n×n symmetric and positive definite matrix. The optimal solution is unique,
and equal to x∗ = A−1b.

1.2 Randomized coordinate descent

Applied to (1), RCD performs the iteration

xt+1 = xt −
A>:ixt − bi

Aii

ei, (2)

where at each iteration, i is chosen with probability pi > 0. It was shown by Leventhal and
Lewis [11] that if the probabilities are proportional to the diagonal elements of A (i.e.,
pi ∼ Aii), then the random iterates of RCD satisfy

E[‖xt − x∗‖2
A] ≤ (1− ρ)t‖x0 − x∗‖2

A,

where ρ = λmin(A)
Tr(A)

and λmin(A) is the minimal eigenvalue of A. That is, as long as the
number of iterations t is at least

O
(

Tr(A)

λmin(A)
log 1

ε

)
, (3)

we have E[‖xt−x∗‖2
A] ≤ ε. Note that Tr(A)/λmin(A) ≥ n, and that this can be arbitrarily

larger that n.
1Many of our results can be extended to convex functions of the form f(x) = φ(Ax) − b>x, where

φ is a smooth and strongly convex function. However, due to space limitations, and the fact that we
already have a lot to say in the special case φ(y) = 1

2‖y‖
2, we leave these more general developments to a

follow-up paper.
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Method Name Algorithm Rate Reference
stochastic descent (SD) (4), Algorithm 1 (5), Lemma 1 Gower and Richtárik [6]
stochastic spectral descent (SSD) Algorithm 2 (6), Theorem 2 NEW
stochastic conjugate descent (SconD) read Section 2.2 Theorem 2 NEW
randomized coordinate descent (RCD) (2), Algorithm 3 (3), (13) Gower and Richtárik [6]
stochastic spectral coordinate descent (SSCD) Algorithm 4 (7), Theorem 8 NEW
mini-batch SD (mSD) Algorithm 5 Lemma 9 Richtárik and Takáč [19]
mini-batch SSCD (mSSCD) Algorithm 6 Theorem 10 NEW
inexact SconD (iSconD) Algorithm 7 Theorem 15 NEW
inexact SSD (iSSD) Algorithm 8 see Section E.2 NEW

Table 1: Algorithms described in this paper.

1.3 Stochastic descent

Recently, Gower and Richtárik [6] developed an iterative “sketch and project” framework
for solving linear systems and quadratic optimization problems; see also [7] for extensions.
In the context of problem (1), and specialized to sketching matrices with a single column,
their method takes the form

xt+1 = xt −
s>t (Axt − b)
s>t Ast

st, (4)

where st ∈ Rn is a random vector sampled from some fixed distribution D. In this paper
we will refer to this method by the name stochastic descent (SD).

Note that xt+1 is obtained from xt by minimizing f(xt + hst) for h ∈ R and setting
xt+1 = xt + hst. Further, note that RCD arises as a special case with D being a discrete
probability distribution over the set {e1, . . . , en}. However, SD converges for virtually
any distribution D, including discrete and continuous distributions. In particular, Gower
and Richtárik [6] show that as long as Es∼D[H] is invertible, where H := ss>

s>As
, then SD

converges as

O
(

1

λmin(W)
log 1

ε

)
, (5)

where W := Es∼D[A1/2HA1/2] (see Lemma 1 for a more refined result due to Richtárik
and Takáč [19]). Rate of RCD in (3) can be obtained as a special case of (5).

1.4 Stochastic spectral descent

The starting point of this paper is the new observation that stochastic descent obtains the
rate

O
(
n log

1

ε

)
(6)

in the special case when D is chosen to be the uniform distribution over the eigenvectors
of A (see Theorem 2). For obvious reasons, we refer to this new method as stochastic
spectral descent (SSD).

To the best of our knowledge, SSD was not explicitly considered in the literature
before. We should note that SSD is fundamentally different from spectral gradient descent
[3, 2], which refers to a family of gradient descent methods with a special choice of stepsize
depending on the spectrum of the Hessian of f .

6



Result Theorem
Uniform probabilities are optimal for n = 2 3
Uniform probabilities are optimal for any n ≥ 2 as long as A is diagonal 4
“Importance sampling” pi ∼ Aii can lead to an arbitrarily worse rate than uniform probabilities 5
“Importance sampling” pi ∼ ‖Ai:‖2 can lead to an arbitrarily worse rate than uniform probabilities 5
For every n ≥ 2 and T > 0, there is A such that the rate of RCD with optimal probabilities is O(T log 1

ε ) 6
For every n ≥ 2 and T > 0, there is A such that the rate of RCD with optimal probabilities is Ω(T log 1

ε ) 7

Table 2: Summary of results on importance and optimal sampling in RCD.

The rate (6) does not merely provide an improvement on the rate of RCD given in
(3); what is remarkable is that this rate is completely independent of the properties (such
as conditioning) of A. Moreover, we show that this method is optimal among the class
of stochastic descent methods (4) parameterized by the choice of the distribution D (see
Theorem 8). Despite the attractiveness of its rate, SSD is not a practical method. This
is because once we have the eigenvectors of A available, the optimal solution x∗ can be
assembled directly without the need for an iterative method.

1.5 Stochastic conjugate descent

We extend all results discussed above for SSD, including the rate (6), to the more general
class of methods we call stochastic conjugate descent (SconD), for which D is the uniform
distribution over vectors v1, . . . , vn which are mutually A conjugate: v>i Avj = 0 for i 6= j
and v>i Avi = 1.

1.6 Optimizing probabilities in RCD

The idea of speeding up RCD via the use of non-uniform probabilities was pioneered by
Nesterov [14] in the context of smooth convex minimization, and later built on by many
authors [20, 18, 1]. In the case of non-accelerated RCD, and in the context of smooth
convex optimization, the most popular choice of probabilities is to set pi ∼ Li, where Li is
the Lipschitz constant of the gradient of the objective corresponding to coordinate i [14, 20].
For problem (1), we have Li = Aii. Gower and Richtárik [6] showed that the optimal
probabilities for (1) can in principle be computed through semidefinite programming
(SDP); however, no theoretical properties of the optimal solution of the SDP were given.

As a warm-up, we first ask the following question: how important is importance
sampling? More precisely, we investigate RCD with probabilities pi ∼ Aii, and RCD with
probabilities pi ∼ ‖Ai:‖2, considered as RCD with “importance sampling”, and compare
these with the baseline RCD with uniform probabilities. Our result (see Theorem 5)
contradicts conventional “wisdom”. In particular, we show that for every n there is a matrix
A such that diagonal probabilities lead to the best rate. Moreover, the rate of RCD with
“importance” can be arbitrarily worse than the rate of RCD with uniform probabilities.
The same result applies to probabilities proportional to the square of the norm of the ith
row of A.

We then switch gears, and motivated by the nature of SSD, we ask the following
question: in order to obtain a condition-number-independent rate such as (6), do we have
to consider new (and hard to compute) descent directions, such as eigenvectors of A, or
can a similar effect be obtained using RCD with a better selection of probabilities? We
give two negative results to this question (see Theorems 6 and 7). First, we show that

7



general spectrum n− k largest eigvls are γ-clustered
c ≤ λi ≤ γc for k + 1 ≤ i ≤ n

α-exp decaying eigvls

RCD (pi ∼ Aii) Õ
(∑

i λi
λ1

)
Õ
(
γnc
λ1

)
Õ
(

1
αn−1

)
SSCD Õ

(
(k+1)λk+1+

∑n
i=k+2 λi

λk+1

)
Õ (γn) Õ

(
1

αn−k−1

)
SSD Õ(n) Õ(n) Õ(n)

Table 3: Comparison of complexities of RCD, SSCD (with parameter 0 ≤ k ≤ n− 1) and
SSD under various regimes on the spectrum of A. The Õ notation supresses a log 1

ε
term.

for any n ≥ 2 and any T > 0, there is a matrix A such that the rate of RCD with any
probabilities (including the optimal probabilities) is O(T log 1

ε
). Second, we give a similar

but much stronger statement where we reach the same conclusion, but for the lower bound
as opposed to the upper bound. That is, O is replaced by Ω.

As a by-product of our investigations into importance sampling, we establish that
for n = 2, uniform probabilities are optimal for all matrices A (see Theorem 3). For a
summary of all these results, see Table 2.

1.7 Interpolating between RCD and SSD

RCD and SSD lie on opposite ends of a continuum of stochastic descent methods for
solving (1). RCD “minimizes” the work per iteration without any regard for the number
of iterations, while SSD minimizes the number of iterations without any regard for the
cost per iteration (or pre-processing cost). Indeed, one step of RCD costs O(‖Ai:‖0) (the
number of nonzero entries in the ith row of A), and hence RCD can be implemented
very efficiently for sparse A. If uniform probabilities are used, no pre-processing (for
computing probabilities) is needed. These advantages are paid for by the rate (3), which
can be arbitrarily high. On the other hand, the rate of SSD does not depend on A. This
advantage is paid for by a high pre-processing cost: the computation of the eigenvectors.
This pre-processing cost makes the method utterly impractical.

One of the main contributions of this paper is the development of a new parametric
family of algorithms that in some sense interpolate between RCD and SSD.

In particular, we consider the stochastic descent algorithm (4) with D being a
discrete distribution over the search directions {e1, . . . , en} ∪ {u1, . . . , uk}, where ui is the
eigenvectors of A corresponding to the ith smallest eigenvalue of A. We refer to this new
method by the name stochastic spectral coordinate descent (SSCD).

We compute the optimal probabilities of this distribution, which turn out to be
unique, and show that for k ≥ 1 they depend on the k + 1 smallest eigenvalues of A:
0 < λ1 ≤ λ2 ≤ · · · ≤ λk+1. In particular, we prove (see Theorem 8) that the rate of SSCD
with optimal probabilities is

O
(

(k + 1)λk+1 +
∑n

i=k+2 λi

λk+1

log 1
ε

)
. (7)

For k = 0, SSCD reduces to RCD with pi ∼ Aii, and the rate (7) reduces to (3). For
k = n− 1, SSCD does not reduce to SSD. However, the rates match. Indeed, in this case
the rate (7) reduces to (6). Moreover, the rate improves monotonically as k increases, from
O( Tr(A)

λmin(A)
log 1

ε
) (for k = 0) to O(n log 1

ε
) (for k = n− 1).
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SSCD removes the effect of the k smallest eigenvalues. Note that the rate (7)
does not depend on the k smallest eigenvalues of A. That is, by adding the eigenvectors
u1, . . . , uk corresponding to the k smallest eigenvalues to the set of descent directions, we
have removed the effect of these eigenvalues.

Clustered eigenvalues. Assume that the n− k largest eigenvalues are clustered: c ≤
λi ≤ γc for some c > 0 and γ > 1, for all k + 1 ≤ i ≤ n. In this case, the rate (7) can
be estimated as a function of the clustering “tightness” parameter γ: O

(
γn log 1

ε

)
. See

Table 3.
This can be arbitrarily better than the rate of RCD, even for k = 1. In other words,

there are situations where by enriching the set of directions used by RCD by a single
eigenvector only, the resulting method accelerates dramatically. To give a concrete and
simplified example to illustrate this, assume that λ1 = δ > 0, while λ2 = · · · = λn = 1.
In this case, RCD has the rate O((1 + n−1

δ
) log 1

ε
), while SSCD with k = 1 has the rate

O(n log 1
ε
). So, SSCD is 1

δ
times better than RCD, and the difference grows to infinity as δ

approaches zero even for fixed dimension n.

Exponentially decaying eigenvalues. If the eigenvalues of A follow an exponential
decay with factor 0 < α < 1, then the rate of RCD is O( 1

αn−1 log 1
ε
), while the rate of

SSCD is O( 1
αn−k−1 log 1

ε
). This is an improvement by the factor 1

αk
, which can be very

large even for small k if α is small. See Table 3. For an experimental confirmation of this
prediction, see Figure 5.

Adding a few “largest” eigenvectors does not help. We show that in contrast with
the situation above, adding a few of the “largest” eigenvectors to the coordinate directions
of RCD does not help. This is captured formally in the appendix as Theorem 12.

Mini-batching. We extend SSCD to a mini-batch setting; we call the new method
mSSCD. We show that the rate of mSSCD interpolates between the rate of mini-batch
RCD and rate of SSD. Moreover, we show that mSSCD is optimal among a certain
parametric family of methods, and that its rate improves as k increases. See Theorem 10.

1.8 Inexact Directions

Finally, we relax the need to compute exact eigenvectors or A- conjugate vectors, and
analyze the behavior of our methods for inexact directions. Moreover, we propose and
analyze an inexact variant of SSD which does not arise as a special case of SD. See
Sections D and E.

2 Stochastic Descent

The stochastic descent method was described in (4). We now formalize it as Algorithm 1,
and equip it with a stepsize, which will be useful in Section 3.2, where we study mini-batch
version of SD.

In order to guarantee convergence of SD, we restrict our attention to the class of
proper distributions, defined next.

9



Algorithm 1 Stochastic Descent (SD)
Parameters: Distribution D; Stepsize parameter ω > 0
Initialize: Choose x0 ∈ Rn

for t = 0, 1, 2, . . . do
Sample search direction st ∼ D
Set xt+1 = xt − ω s>t (Axt−b)

s>t Ast
st

end for

Assumption 1. Distribution D is proper with respect to A. That is, Es∼D[H] is invertible,
where

H :=
ss>

s>As
. (8)

Next we present the main convergence result for SD.

Lemma 1 (Convergence of stochastic descent [6, 19]). Let D be proper with respect to A,
and let 0 < ω < 2. Stochastic descent (Algorithm 1) converges linearly in expectation. In
particular, we have

(1− ω(2− ω)λmax(W))t‖x0 − x∗‖2
A ≤ E[‖xt − x∗‖2

A] (9)

and
E[‖xt − x∗‖2

A] ≤ (1− ω(2− ω)λmin(W))t‖x0 − x∗‖2
A, (10)

where
W := Es∼D[A1/2HA1/2]. (11)

Finally, the statement remains true if we replace ‖xt − x∗‖2
A by f(xt)− f(x∗) for all t.

It is easy to observe that the stepsize choice ω = 1 is optimal. This is why we have
decided to present the SD method (4) with this choice of stepsize. Moreover, notice that
due to linearity of expectation,

Tr(W)
(11)
= E[Tr(A1/2HA1/2)]

(8)
= E

[
Tr

(
zz>

z>z

)]
= E

[
Tr

(
z>z

z>z

)]
= 1,

where z = A1/2s. Therefore,

0 < λmin(W) ≤ 1

n
≤ λmax(W) ≤ 1.

2.1 Stochastic Spectral Descent

Let A =
∑n

i=1 λiuiu
>
i be the eigenvalue decomposition of A. That is, 0 < λ1 ≤ λ2 ≤

. . . ≤ λn are the eigenvalues of A and u1, . . . , un are the corresponding orthonormal
eigenvectors. Consider now the SD method with D being the uniform distribution over the

10



Algorithm 2 Stochastic Spectral Descent (SSD)
Initialize: x0 ∈ Rn; (u1, λ1), . . . (un, λn): eigenvectors and eigenvalues of A
for t = 0, 1, 2, . . . do
Choose i ∈ [n] uniformly at random
Set xt+1 = xt −

(
u>i xt −

u>i b

λi

)
ui

end for

set {u1, . . . , un}, and ω = 1. This gives rise to a new variant of SD which we call stochastic
spectral descent (SSD).

For SSD we can establish an unusually strong convergence result, both in terms of
speed and tightness.

Theorem 2 (Convergence of stochastic spectral descent). Let {xk} be the sequence of
random iterates produced by stochastic spectral descent (Algorithm 2). Then

E[‖xt − x∗‖2
A] =

(
1− 1

n

)t
‖x0 − x∗‖2

A. (12)

The above theorem implies the rate (6) mentioned in the introduction. It means that
up to a logarithmic factor, SSD only needs n iterations to converge. Notice that (12) is an
identity, and hence the rate is not improvable.

2.2 Stochastic Conjugate Descent

The same rate as in Theorem 2 holds for the stochastic conjugate descent (SconD) method,
which arises as a special case of stochastic descent for ω = 1 and D being a uniform
distribution over a set of A-orthogonal (i.e., conjugate) vectors. The proof follows by
combining Lemmas 1 and 13.

2.3 Randomized Coordinate Descent

RCD (Algorithm 3) arises as a special case of SD with unit stepsize (ω = 1) and distribution
D given by st = ei with probability pi > 0.

Algorithm 3 Randomized Coordinate Descent (RCD)
Parameters: probabilities p1, . . . , pn > 0
Initialize: x0 ∈ Rn

for t = 0, 1, 2, . . . do
Choose i ∈ [n] with probability pi > 0
Set xt+1 = xt − Ai:xt−bi

Aii
ei

end for

The rate of RCD (Algorithm 3) can therefore be deduced from Lemma 1. Notice that
in view of (8), we have

E[H] =
n∑
i=1

pi
eie
>
i

Aii

= Diag

(
p1

A11

, . . . ,
pn

Ann

)
.

11



So, as long as all probabilities are positive, Assumption 1 is satisfied. Therefore, Lemma 1
applies and RCD enjoys the rate

O

 1

λmin

(
ADiag

(
pi
Aii

)) log
1

ε

 . (13)

Uniform probabilities can be optimal. We first prove that uniform probabilities are
optimal in 2D.

Theorem 3. Let n = 2 and consider RCD (Algorithm 3) with probabilities p1 > 0 and
p2 > 0, p1 + p2 = 1. Then the choice p1 = p2 = 1

2
optimizes the rate of RCD in (13).

Next we claim that uniform probabilities are optimal in any dimension n as long as
the matrix A is diagonal.

Theorem 4. Let n ≥ 2 and let A be diagonal. Then uniform probabilities (pi = 1
n
for all

i) optimize the rate of RCD in (13).

“Importance” sampling can be unimportant. In our next result we contradict
conventional wisdom about typical choices of “importance sampling” probabilities. In
particular, we claim that diagonal and row-squared-norm probabilities can lead to an
arbitrarily worse performance than uniform probabilities.

Theorem 5. For every n ≥ 2 and T > 0, there exists A such that: (i) The rate of RCD
with pi ∼ Aii is T times worse than the rate of RCD with uniform probabilities. (ii)
The rate of RCD with pi ∼ ‖Ai:‖2 is T times worse than the rate of RCD with uniform
probabilities.

Optimal probabilities can be bad. Finally, we show that there is no hope for
adjustment of probabilities in RCD to lead to a rate independent of the data A, as
is the case for SSD. Our first result states that such a result can’t be obtained from the
generic rate (13).

Theorem 6. For every n ≥ 2 and T > 0, there exists A such that the number of iterations
(as expressed by formula (13)) of RCD with any choice of probabilities p1, . . . , pn > 0 is
O(T log(1/ε)).

However, that does not mean, by itself, that such a result can’t be possibly obtained
via a different analysis. Our next result shatters these hopes as we establish a lower bound
which can be arbitrarily larger than the dimension n.

Theorem 7. For every n ≥ 2 and T > 0, there exists an n× n positive definite matrix
A and starting point x0, such that the number of iterations of RCD with any choice
probabilities p1, . . . , pn > 0 is Ω(T log(1/ε)).
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3 Interpolating Between RCD and SSD
Assume now that we have some partial spectral information available. In particular,
fix k ∈ {0, 1, . . . , n − 1} and assume we know eigenvectors ui and eigenvalues λi for
i = 1, . . . , k. We now define a parametric distribution D(α, β1, . . . , βk) with parameters
α > 0 and β1, . . . , βk ≥ 0 as follows. Sample s ∼ D(α, β1, . . . , βk) arises through the
process

s =

{
ei with probability pi = αAii

Ck
, i ∈ [n],

ui with probability pn+i = βi
Ck
, i ∈ [k],

(14)

where Ck := αTr(A) +
∑k

i=1 βi is a normalizing factor ensuring that the probabilities sum
up to 1.

3.1 SSCD

Applying the SD method with the distribution D = D(α, β1, . . . , βk) gives rise to a new
specific method which we call stochastic spectral coordinate descent (SSCD).

Algorithm 4 Stochastic Spectral Coordinate Descent (SSCD)
Parameters: Distribution D(α, β1, . . . , βk)
Initialize: x0 ∈ Rn

for t = 0, 1, 2, . . . do
Sample st ∼ D(α, β1, . . . , βk)

Set xt+1 = xt − s>t (Axt−b)
s>t Ast

st
end for

Theorem 8. Consider Stochastic Spectral Coordinate Descent (Algorithm 4) for fixed
k ∈ {0, 1, . . . , n− 1}. The method converges linearly for all positive α > 0 and nonnegative
βi. The best rate is obtained for parameters α = 1 and βi = λk+1 − λi; and this is the
unique choice of parameters leading to the best rate. In this case,

E[‖xt − x∗‖2
A] ≤

(
1− λk+1

Ck

)t
‖x0 − x∗‖2

A,

where

Ck = (k + 1)λk+1 +
n∑

i=k+2

λi.

Moreover, the rate improves as k grows, and we have

λ1

Tr(A)
=
λ1

C0

≤ · · · ≤ λk+1

Ck
≤ · · · ≤ λn

Cn−1

=
1

n
.

If k = 0, SSCD reduces to RCD (with diagonal probabilities). Since λ1
C0

= λ1
Tr(A)

, we
recover the rate of RCD of Leventhal and Lewis [11]. With the choice k = n−1 our method
does not reduce to SSD. However, the rates match. Indeed, λn

Cn−1
= λn

nλn
= 1

n
(compare with

Theorem 2).
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“Largest” eigenvectors do not help. It is natural to ask whether there is any benefit
in considering a few “largest” eigenvectors instead. Unfortunately, for the same parametric
family as in Theorem 8, the answer is negative. The optimal parameters suggest that RCD
has better rate without these directions. See Theorem 12 in the appendix.

3.2 Mini-batch SD

A mini-batch version of SD was developed by Richtárik and Takáč [19]. Here we restate
the method as Algorithm 5.

Algorithm 5 Mini-batch Stochastic Descent (mSD)
Parameters: Distribution D; stepsize parameter ω > 0; mini-batch size τ ≥ 1
Initialize: x0 ∈ Rn

for t = 0, 1, 2, . . . do
for i = 1, 2, . . . , τ do
Sample sti ∼ D
Set xt+1,i = xt − ω s>ti(Axt−b)

s>tiAsti
sti

end for
Set xt+1 = 1

τ

τ∑
i=1

xt+1,i

end for

Lemma 9 (Convergence of mSD [19]). Let D be proper with respect to A, and let 0 <
ω < 2

ξ(τ)
, where ξ(τ) := 1

τ
+
(
1− 1

τ

)
λmax(W). Then

E[‖xt − x∗‖2
A] ≤ (ρ(ω, τ))t ‖x0 − x∗‖2

A, (15)

where
ρ(ω, τ) = 1− ω[2− ωξ(τ)]λmin(W).

For any fixed τ ≥ 1, the optimal stepsize choice is ω(τ) = 1
ξ(τ)

and the associated optimal
rate is

ρ(ω(τ), τ) = 1− λmin(W)
1
τ

+
(
1− 1

τ

)
λmax(W)

.

3.3 Mini-batch SSCD

Specializing mSD to the distribution D = D(α, β1, . . . , βk) gives rise to a new specific
method which we call mini-batch stochastic spectral coordinate descent (mSSCD), and
formalize as Algorithm 6.

The rate of mSSCD is governed by the following result.

Theorem 10. Consider mSSCD (Algorithm 6) for fixed k ∈ {0, 1, . . . , n− 1} and optimal
stepsize parameter ω(τ) = 1

ξ(τ)
. The method converges linearly for all positive α > 0 and

nonnegative βi. The best rate is obtained for parameters α = 1 and βi = λk+1 − λi; and
this is the unique choice of parameters leading to the best rate. In this case,

E[‖xt − x∗‖2
A] ≤

(
1− λk+1

Fk

)t
‖x0 − x∗‖2

A,
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Algorithm 6 Mini-batch Stochastic Spectral Coordinate Descent (mSSCD)
Parameters: Distribution D(α, β1, . . . , βk); relaxation parameter ω ∈ R; mini-batch
size τ ≥ 1
Initialize: x0 ∈ Rn

for t = 0, 1, 2, . . . do
for i = 1, 2, . . . , τ do

Sample sti ∼ D(α, β1, . . . , βk)

Set xt+1,i = xt − ω s>ti(Axt−b)
s>tiAsti

sti
end for
Set xt+1 = 1

τ

τ∑
i=1

xt+1,i

end for

where

Fk :=
1

τ

(
(k + 1)λk+1 +

n∑
i=k+2

λi

)
+

(
1− 1

τ

)
λn.

Moreover, the rate improves as k grows, and we have

λ1

1
τ
Tr(A) +

(
1− 1

τ

)
λn

=
λ1

F0

≤ · · · ≤ λk+1

Fk

and
λk+1

Fk
≤ · · · ≤ λn

Fn−1

=
1

n−1
τ

+ 1
.

If k = 0, mSSCD reduces to mini-batch RCD (with diagonal probabilities). Since
λ1
F0

= λ1
1
τ

Tr(A)+(1− 1
τ )λn

, we recover the rate of mini-batch RCD [19]. With the choice k = n−1

our method does not reduce to mSSD. However, the rates match.

4 Experiments

4.1 Stochastic spectral coordinate descent (SSCD)

In our first experiment we study how the practical behavior of SSCD (Algorithm 4)
depends on the choice of k. What we study here does not depend on the dimensionality of
the problem (n), and hence it suffices to perform the experiments on small dimensional
problems (n = 30).

In this experiment we consider the regime of clustered eigenvalues described in
Section 1.7 and summarized in Table 3. In particular, we construct a synthetic matrix
A ∈ R30×30 with the smallest 15 eigenvalues clustered in the interval (5, 5 + ∆) and the
largest 15 eigenvalues clustered in the interval (θ, θ + ∆). We vary the tightness parameter
∆ and the separation parameter θ, and study the performance of SSCD for various choices
of k. See Figure 3.

Our first finding is a confirmation of the phase transition phenomenon predicted by
our theory. Recall that the rate of SSCD (see Theorem 8) is

Õ
(

(k + 1)λk+1 +
∑n

i=k+2 λi

λk+1

)
.
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If k < 15, we know λi ∈ (5, 5 + ∆) for i = 1, 2, . . . , k + 1, and λi ∈ (θ, θ + ∆) for
i = k + 2, . . . , n. Therefore, the rate can be estimated as

rsmall := Õ
(
k + 1 +

(n− k − 1)(θ + ∆)

5

)
.

On the other hand, if k ≥ 15, we know that λi ∈ (θ, θ+ ∆) for i = k + 1, . . . , n, and hence
the rate can be estimated as

rlarge := Õ
(
k + 1 +

(n− k − 1)(θ + ∆)

θ

)
.

Note that if the separation θ between the two clusters is large, the rate rlarge is much
better than the rate rsmall. Indeed, in this regime, the rate rlarge becomes Õ(n), while
rsmall can be arbitrarily large.

Going back to Figure 3, notice that this can be observed in the experiments. There
is a clear phase transition at k = 15, as predicted be the above analysis. Methods using
k ∈ {0, 6, 12} are relatively slow (although still enjoying a linear rate), and tend to
have similar behaviour, especially when ∆ is small. On the other hand, methods using
k ∈ {18, 24, 29} are much faster, with a behaviour nearly independent of θ and ∆. Moreover,
as θ increases, the difference in the rates between the slow methods using k ∈ {0, 6, 12}
and the fast methods using k ∈ {18, 24, 29} grows.

We have performed additional experiments with three clusters; see Figure 4 in the
appendix.

4.2 Mini-batch SSCD

In Figure 2 we report on the behavior of mSSCD, the mini-batch version of SSCD, for
four choices of the mini-batch parameter τ , and several choices of k. Mini-batch of size
τ is processed in parallel on τ processors, and the cost of a single iteration of mSSCD is
(roughly) the same for all τ .

For τ = 1, the method reduces to SSCD, considered in previous experiment (but
on a different dataset). Since the number of iterations is small, there are no noticeable
differences across using different values of k. As τ grows, however, all methods become
faster. Mini-batching seems to be more useful as k is larger. Moreover, we can observe that
acceleration through mini-batching starts more aggressively for small values op k, and its
added benefit for increasing values of k is getting smaller and smaller. This means that
even for relatively small values of k, mini-batching can be expected to lead to substantial
speed-ups.

4.3 Matrix with 10 billion entries

In Figure 3 we report on an experiment using a synthetic problem with data matrix A of
dimension n = 105 (i.e., potentially with 1010 entries). As all experiments were done on a
laptop, we worked with sparse matrices with 106 nonzeros only.

In the first row of Figure 3 we consider matrix A with all eigenvalues distributed
uniformly on the interval [1, 100]. We observe that SSCD with k = 104 (just 10% of n)
requires about an order of magnitude less iterations than SSCD with k = 0 (=RCD).
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Figure 1: Expected precision E [‖xt − x∗‖2
A/‖x0 − x∗‖2

A] versus # iterations of SSCD for
symmetric positive definite matrices A of size 30× 30 with different structures of spectra.
The spectrum of A consists of 2 equally sized clusters of eigenvalues; one in the interval
(5, 5 + ∆), and the other in the interval (θ, θ + ∆).
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Figure 2: Expected precision E [‖xt − x∗‖2
A/‖x0 − x∗‖2

A] versus # iterations of mini-batch
SSCD for A ∈ R30×30 and several choices of mini-batch size τ . The spectrum of A was
chosen as a uniform discretization of the interval [1, 60].

In the second row we consider a scenario where l eigenvalues are small, contained
in [1, 2], with the rest of the eigenvalues contained in [100, 200]. We consider l = 10 and
l = 1000 and study the behaviour of SSCD with k = l. We see that for l = 10, SSCD
performs dramatically better than RCD: it is able to achieve machine precision while
RCD struggles to reduce the initial error by a factor larger than 106. For l = 1000, SSCD
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achieves error 10−9 while RCD struggles to push the error below 10−4. These tests show
that in terms of # iterations, SSCD has the capacity to accelerate on RCD by many orders
of magnitude.
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Figure 3: Expected precision E [‖xt − x∗‖2
A/‖x0 − x∗‖2

A] versus # iterations of SSCD for a
matrix A ∈ R105×105 . Top row: spectrum of A is uniformly distributed on [1, 100]. Bottom
row: spectrum contained in two clusters: [1, 2] and [100, 200].

5 Extensions

Our algorithms and convergence results can be extended to eigenvectors and conjugate
directions which are only computed approximately. Some of this development can be found
in the appendix (see Section D). Finally, as mentioned in the introduction, our results can
be extended to the more general problem of minimizing f(x) = φ(Ax), where φ is smooth
and strongly convex.

References

[1] Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, and Yang Yuan. Even faster accelerated
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[6] Robert M Gower and Peter Richtárik. Randomized iterative methods for linear
systems. SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015.
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Appendix
A Extra Experiments
In this section we report on some additional experiments which shed more light on the
behaviour of our methods.

A.1 Performance on SSCD on A with three clusters eigenvalues
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Figure 4: Expected precision E
[
||xt−x∗||2A
||x0−x∗||2A

]
versus the number of iterations of SSCD for

symmetric positive definite matrices A of size 30×30 with different structures of spectrum.
The spectrum of A consists of 3 equally sized clusters of eigenvalues; one in the interval
(10, 10 + ∆), the second in the interval (θ, θ + ∆) and the third in the interval (2θ, 2θ +
∆). We show results for 16 combinations of θ and ∆: ∆ ∈ {1, 10, 25, 100} and θ ∈
{100, 250, 500, 1000}.

In Figure 4 we report on experiments similar to those performed in Section 4.1, but on
data matrix A ∈ R30×30 whose eigenvalues belong to three clusters, with 10 eigenvalues in
each. We can observe that the SSCD methods can be grouped into three categories: slow,
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fast, and very fast, depending on whether k corresponds to the smallest 10 eigenvalues,
the next cluster of 10 eigenvalues, or the 10 largest eigenvalues. That is, there are two
phase transitions.

A.2 Exponentially decaying eigenvalues

We now consider matrix A ∈ R10×10 with eigenvalues 20, 21, . . . , 29. We apply SSCD with
increasing values of k (see Figure 5).
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Figure 5: Expected precision E
[
||xt−x∗||2A
||x0−x∗||2A

]
versus the number of iterations of SSCD for

symmetric positive definite matrix A of size 10× 10.

We can see that the performance boost accelerates as k increases. So, while one may
not expect much speed-up for very small k, there will be substantial speed-up for moderate
values of k. This is predicted by our theory. Indeed, consulting Table 3 (last column), we
have α = 1/2, and hence for k = 0 the theoretical rate is Õ( 1

α9 ). For general k we have
Õ( 1

α9−k ). So, the speedup for value k > 0 compared to the baseline case of k = 0 (=RCD)
is 2k, i.e., exponential.

B Proofs

In this section we provide proofs of the statements from the main body of the paper.
Table 4 provides a guide on where the proof of the various results can be found.
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Result Section
Lemma 1 B.1
Theorem 2 B.2
Theorem 3 B.3
Theorem 4 B.4
Theorem 5 B.5
Theorem 6 B.6
Theorem 7 B.7
Theorem 8 B.8
Lemma 9 B.9

Theorem 10 B.10

Table 4: Proof of lemmas and theorems stated in the main paper.

B.1 Proof of Lemma 1

The result follows from Theorem 4.8(i) in [19] with the choice B = A. Note that since
x∗ = A−1b is the unique solution of Ax = b, it is equal to the projection of x0 onto the
solution space of Ax = b, as required by the assumption in Theorem 4.8(i). It only remains
to check that Assumption 3.5 (exactness) in [19] holds. In view of Theorem 3.6(iv) in [19],
it suffices to check that the nullspace of E[H] is trivial. However, this is equivalent to the
assumption in Lemma 1 that E[H] be invertible.

Finally, observe that
1
2
‖x− x∗‖2

A = 1
2
(x− x∗)>A(x− x∗) = 1

2
x>Ax+ 1

2
x>∗Ax∗ − x>Ax∗

= 1
2
x>Ax+ 1

2
x>∗Ax∗ − x>AA−1b

(1)
= f(x) + 1

2
x>∗Ax∗

= f(x)− f(x∗).

B.2 Proof of Theorem 2

We will break down the proof into three steps.

1. First, let us show that Algorithm 2 is indeed SSD, as described in (4), i.e., xt+1 =

xt− s>t (Axt−b)
s>t Ast

st. We known that st = ui with probability 1/n. Since Aui = λiui, and
assuming that at iteration t we have st = ui, we get

xt+1 = xt −
u>i (Axt − b)
u>i Aui

ui = xt −
u>i (Axt − b)

λi
ui

= xt −
λiu
>
i xt − u>i b
λi

ui = xt −
(
u>i xt −

u>i b

λi

)
ui.

2. We now need to argue that the assumption that E[H] is invertible is satisfied.

E[H]
(8)
=

n∑
i=1

1

n

uiu
>
i

u>i Aui
=

n∑
i=1

1

n

uiu
>
i

λi
. (16)

Since E[H] has positive eigenvalues 1/(nλi), it is invertible.
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3. Applying Lemma 1, we get

(1− λmax(W))tE[‖x0 − x∗‖2
A] ≤ E[‖xt − x∗‖2

A] ≤ (1− λmin(A))tE[‖x0 − x∗‖2
A].

It remains to show that λmin(W) = λmax(W) = 1
n
. In view of (16), and since

A1/2ui =
√
λiui, we get

W
(11)
= A1/2E[H]A1/2 (16)

= A1/2

n∑
i=1

1

n

uiu
>
i

λi
A1/2 =

n∑
i=1

1

n

A1/2uiu
>
i A1/2

λi
=

1

n
I.

B.3 Proof of Theorem 3

Let A be a 2× 2 symmetric positive definite matrix:

A =

(
a c
c b

)
.

We know that a, b > 0, and ab− c2 > 0. Assume that st = e1 = (1, 0)> with probability
p > 0 and st = e2 = (0, 1)> with probability q > 0, where p+ q = 1. Then

E[H]
(8)
= p

e1e
>
1

e>1 Ae1

+ q
e2e
>
2

e>2 Ae2

=

(
p
a

0
0 q

b

)
,

and therefore,

E[H]A =

(
p p c

a

q c
b

q

)
.

Note that E[H]A has the same eigenvalues as W = A1/2E[H]A1/2. We now find the
eigenvalues of E[H]A by finding the zeros of the characteristic polynomial:

det(E[H]A− λI) = det
(
p− λ p c

a

q c
b

q − λ

)
= λ2 − λ+ pq

(
1− c2

ab

)
= 0

It can be seen that

λmin(E[H]A) =
1

2
− 1

2

√
1− 4pq

(
1− c2

ab

)
=

1

2
− 1

2

√
1− 4p(1− p)

(
1− c2

ab

)
.

The expression λmin(E[H]A) is maximized for p = 1
2
, independently of the values of

a, b and c.

B.4 Proof of Theorem 4

Fix n ≥ 2, and let ∆+
n := {p ∈ Rn : p > 0,

∑
i pi = 1} be the (interior of the) probability

simplex. Further, let A = Diag(A11,A22, . . . ,Ann) be a diagonal matrix with positive
diagonal entries.

The rate of RCD with any probabilities arises as a special case of Lemma 1. We
therefore need to study the smallest eigenvalue of W (defined in (11)) as a function of
p = (p1, . . . , pn). We have

H(p) := Es∼D[H]
(8)
=
∑
i

pi
Aii

eie
>
i = Diag(p1/A11, p2/A22, . . . , pn/Ann),

24



and hence

W
(11)
= W(p) := A1/2H(p)A1/2 =

n∑
i=1

pieie
>
i =


p1 0 . . .
0 p2 . . .

. . . . . .
. . .

0 0 . . . pn

 . (17)

Note that λmin(W(p))
(17)
= λmin(Diag(p1, p2, . . . , pn)) = mini pi, and thus

max
p∈∆+

n

λmin(W(p)) =
1

n
.

Clearly, the optimal probabilities are uniform: p∗i = 1
n
for all i.

B.5 Proof of Theorem 5

We continue from the proof of Theorem 4.

1. Consider probabilities proportional to the diagonal elements: pi = Aii/Tr(A) for all
i. Choose A11 := t, and A22 = · · · = Ann = 1. Then

λmin(W(p)) ≤ p2 =
A22

Tr(A)
=

1

t+ n− 1
−→ 0 as t −→∞.

2. Consider probabilities proportional to the squared row norms: pi = ‖Ai:‖2/Tr(A>A)
for all i. Choose A11 := t, and A22 = · · · = Ann = 1. Then

λmin(W(p)) ≤ p2 =
A22

Tr(A>A)
=

1

t2 + n− 1
−→ 0 as t −→∞.

In both cases, λmin(W(p))
λmin(W(p∗))

can be made arbitrarily small by a suitable choice of t.

B.6 Proof of Theorem 6

The rate of RCD with any probabilities arises as a special case of Lemma 1. We therefore
need to study the smallest eigenvalue of W (defined in (11)). Since we wish to show that
the rate can be bad, we will first prove a lemma bounding λmin(W) from above.

Lemma 11. Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A. Then

λmin(W) ≤ 1

n

(
n∏
k=1

λk
Akk

)1/n

. (18)

Доказательство. We have

W
(11)
= A

1
2E [H]A

1
2

(8)
= A

1
2

(
n∑
k=1

pkeke
>
k

Akk

)
A

1
2 = A

1
2 Diag

(
pk

Akk

)
A

1
2 .
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From the above we see that the determinant of W is given by

det(W) = det(A)
n∏
k=1

pk
Akk

. (19)

On the other hand, we have the trivial bound

det(W) =
n∏
k=1

λk(W) ≥ (λmin(W))n. (20)

Putting these together, we get an upper bound on λmin(W) in terms of the eigenvalues
and diagonal elements of A:

λmin(W)
(20)
≤ n
√

det(W)
(19)
= n

√
det(A) · n

√√√√ n∏
k=1

pk
Akk

= n
√

det(A) · n

√√√√ n∏
k=1

1

Akk

· n

√√√√ n∏
k=1

pk

(∗)
≤ n

√
det(A) · n

√√√√ n∏
k=1

1

Akk

·
∑n

k=1 pk
n

=
n
√

det(A)

n
· n

√√√√ n∏
k=1

1

Akk

(20)
=

1

n
n

√√√√ n∏
k=1

λk
Akk

,

where (*) follows from the arithmetic-geometric mean inequality.

The Proof: Let λ1, . . . , λn are any positive real numbers. We now construct matrix
A = MΛM>, where Λ := Diag(λ1, . . . , λn) and

M :=


1/
√

2 1/
√

2 0 · · · 0

−1/
√

2 1/
√

2 0 · · · 0
0 0 1 · · · 0
...

...
... . . . 0

0 0 0 · · · 1

 ∈ Rn×n.

Clearly, A is symmetric. Since M is orthonormal, λ1, . . . , λn are, by construction, the
eigenvalues of A. Hence, A is symmetric and positive definite. Further, note that the
diagonal entries of A are related to its eigenvalues as follows:

Akk =

{
λ1+λ2

2
, k = 1, 2;

λk, otherwise.
(21)
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Applying Lemma 11, we get the bound

λmin(W)
(18)
≤ 1

n

(
n∏
k=1

λk
Akk

)1/n

=
1

n

(
2∏

k=1

λk
Akk

·
n∏
k=3

λk
Akk

)1/n

(21)
=

1

n

(
2∏

k=1

λk
Akk

)1/n

(21)
=

1

n

(
4λ1λ2

(λ1 + λ2)2

)1/n

.

Let c > 0 be such that λ1 = cλ2. Then 4λ1λ2
(λ1+λ2)2

= 4c
(1+c)2

. If choose c small enough so
that 4c

(1+c)2
≤
(
n
T

)n, then λmin(W) ≤ 1
T
. The statement of the theorem follows.

B.7 Proof of Theorem 7

Let W = UΛU> be the eigenvalue decomposition of W, where U = [u1, . . . , un]
are the eigenvectors, λ1(W) ≤ . . . ≤ λn(W) are the eigenvalues and Λ =
Diag (λ1(W), . . . , λn(W)). From Theorem 4.3 of [19] we get

E
[
U>A1/2(xt − x∗)

]
= (I−Λ)tU>A1/2(x0 − x∗). (22)

Now we use Jensen’s inequality and get

E
[
‖xt − x∗‖2

A

]
= E

[∥∥U>A1/2(xt − x∗)
∥∥2

2

]
≥
∥∥E [U>A1/2(xt − x∗)

]∥∥2

2

(22)
=
∥∥(I−Λ)tU>A1/2(x0 − x∗)

∥∥2

2
(23)

=
n∑
i=1

(1− λi(W))2t
(
u>i A1/2(x0 − x∗)

)2 ≥ (1− λ1(W))2t
(
u>1 A1/2(x0 − x∗)

)2
. (24)

Now we take an example of matrix A, for which we set λmin(W) ≤ 1
T
for arbitrary

T > 0, like we did in Section B.6. We also choose x0 = x∗ + A−1/2u1. For this choice of A
and x0 we get ‖x0 − x∗‖2

A = ‖u1‖2
2 and

E
[
‖xt − x∗‖2

A

]
≥ (1− λ1(W))2t ‖u1‖2

2 ≥
(

1− 1

T

)2t

‖u1‖2
2 =

(
1− 1

T

)2t

‖x0 − x∗‖2
A .

(25)

B.8 Proof of Theorem 8

We divide the proof into several steps.

1. Let us first show that SSCD converges with a linear rate for any choice of α > 0
and nonnegative {βi}. Since SSCD arises as a special case of SD, it suffices to apply
Lemma 1. In order to apply this lemma, we need to argue that D = D(α, β1, . . . , βn)
is a proper distribution. Indeed,
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Es∼D[H]
(8)
=

n∑
i=1

pi
eie
>
i

e>i Aei
+

k∑
i=1

pn+i
uiu
>
i

u>i Aui

=
1

Ck

(
αI +

k∑
i=1

uiu
>
i

βi
λi

)
(26)

� α

Ck
I � 0.

2. For the specific choice of parameters α = 1 and βi = λk+1 − λi we have

Es∼D[H] =
1

Ck

(
I +

k∑
i=1

uiu
>
i

λk+1 − λi
λi

)
,

and Ck = (k + 1)λk+1 +
m∑

i=k+2

λi. Therefore,

Es∼D[AH] =
1

Ck

(
k∑
i=1

λk+1uiu
>
i +

n∑
i=k+1

λiuiu
>
i

)
.

The minimal eigenvalue of this matrix, which has the same spectrum as W, is

λmin(Es∼D[AH]) =
λk+1

Ck
=

λk+1

(k + 1)λk+1 +
n∑

i=k+2

λi

.

The main statement follows by applying Lemma 1.

3. We now show that the rate improves as k increases. Indeed,

k +
1

λk+1

m∑
i=k+1

λi = k + 1 +
1

λk+1

m∑
i=k+2

λi ≥ k + 1 +
1

λk+2

m∑
i=k+2

λi.

By taking reciprocals, we get

λk+2

(k + 1)λk+2 +
m∑

i=k+2

λi

≥ λk+1

kλk+1 +
m∑

i=k+1

λi

.

4. It remains to establish optimality of the specific parameter choice α = 1 and
βi = λk+1 − λi. Continuing from (26), we get

Es∼D[AH]
(26)
=

1

Ck

(
n∑
i=1

uiu
>
i αλi +

k∑
i=1

uiu
>
i βi

)
=

1

Ck

(
k∑
i=1

(αλi + βi)uiu
>
i +

n∑
i=k+1

αλiuiu
>
i

)
.

(27)
The eigenvalues of Es∼D[AH] are {αλi+βi

Ck
}ki=1 ∪ {αλiCk

}ni=k+1. Let γ be the smallest
eigenvalue, i.e., γ := λmin(Es∼D[AH]) = θ

Ck
, and Ω be the largest eigenvalue, i.e.,

Ω := λmax(Es∼D[AH]) = ∆
Ck
, where θ and ∆ are appropriate constants. There are

now two options.
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(a) γ = αλk+1

Ck
. Then αλi + βi ≥ αλk+1 for i ∈ {1, . . . , k}. In this case we obtain:

Ck = αTr (A) +
k∑
i=1

βi =
k∑
i=1

(αλi + βi) + α

n∑
i=k+1

λi ≥ α

(
kλk+1 +

n∑
i=k+1

λi

)
(28)

and therefore
γ ≤ λk+1

kλk+1 +
n∑

i=k+1

λi

. (29)

(b) γ =
αλj+βj
Ck

= θ
Ck

for some j ∈ {1, . . . , k}. Then

Ck = αTr (A) +
k∑
i=1

βi =
k∑
i=1

(αλi + βi) + α
n∑

i=k+1

λi ≥ kθ + α
n∑

i=k+1

λi (30)

whence
γ ≤ θ

kθ + α
n∑

i=k+1

λi

. (31)

Note that the function f(θ) = θ

kθ+α
n∑

i=k+1

λi

increases monotonically:

f ′(θ) =
1

kθ + α
n∑

i=k+1

λi

− kθ

(kθ + α
n∑

i=k+1

λi)2

=

α
n∑

i=k+1

λi

(kθ + α
n∑

i=k+1

λi)2

> 0. (32)

From this and inequality αλk+1 ≥ θ we get

γ ≤ αλk+1

α(kλk+1 +
n∑

i=k+1

λi)
=

λk+1

kλk+1 +
n∑

i=k+1

λi

. (33)

In both possible cases we have shown that

λmin(Es∼D[AH]) ≤ λk+1

kλk+1 +
n∑

i=k+1

λi

.

So, it is the optimal rate in this family of methods. Optimal distribution is unique
and it is:

s ∼ D ⇔ s =

{
ei with probability pi = Aii

Ck
i = 1, 2, . . . , n

ui with probability pn+i = λk+1−λi
Ck

i = 1, 2, . . . , k,
(34)

where Ck = kλk+1 +
n∑

i=k+1

λi.
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B.9 Proof of Lemma 9

The steps are analogous to the proof of Lemma 1.

B.10 Proof of Theorem 10

Let Ck = (k + 1)λk+1 +
n∑

i=k+2

λi γ = θ
Ck

— the minimal eigenvalue of the matrix W and

Ω = ∆
Ck

— the maximal eigenvalue of the matrix W. The optimal rate of the method [19] is

r(τ) =
γ

1
τ

+
(
1− 1

τ

)
Ω

=
θ

1
τ
Ck +

(
1− 1

τ

)
∆
. (35)

From the Section B.8 we have

Es∼D[AH] =
1

Ck

(
k∑
i=1

λk+1uiu
>
i +

n∑
i=k+1

λiuiu
>
i

)
.

There are two options.

1. γ = αλk+1

Ck
. Then αλi + βi ≥ αλk+1 for i ∈ {1, . . . , k} and ∆ > αλn. In this case we

obtain:

Ck = αTr (A) +
k∑
i=1

βi =
k∑
i=1

(αλi + βi) + α
n∑

i=k+1

λi ≥ α

(
kλk+1 +

n∑
i=k+1

λi

)
(36)

and therefore

r(τ) ≤ αλk+1

α
τ

(
kλk+1 +

n∑
i=k+1

λi

)
+
(
1− 1

τ

)
αλn

=
λk+1

1
τ

(
kλk+1 +

n∑
i=k+1

λi

)
+
(
1− 1

τ

)
λn

.

(37)

2. γ =
αλj+βj
Ck

= θ
Ck

for some j ∈ {1, . . . , k}. Then

Ck = αTr (A)+
k∑
i=1

βi =
k∑
i=1

(αλi+βi)+α
n∑

i=k+1

λi ≥ kθ+α
n∑

i=k+1

λi, ∆ ≥ αλn (38)

whence
r(τ) 6

θ

1
τ

(
kθ + α

n∑
i=k+1

λi

)
+
(
1− 1

τ

)
αλn

. (39)

Note that the function f(θ) = θ

1
τ

(
kθ+α

n∑
i=k+1

λi

)
+(1− 1

τ )αλn
increases monotonically:

f ′(θ) = 1

1
τ

(
kθ+α

n∑
i=k+1

λi

)
+(1− 1

τ )αλn
−

k
τ
θ(

1
τ

(
kθ+α

n∑
i=k+1

λi

)
+(1− 1

τ )αλn
)2

=

α
τ

n∑
i=k+1

λi+(1− 1
τ )αλn(

1
τ

(
kθ+α

n∑
i=k+1

λi

)
+(1− 1

τ )αλn
)2 > 0.

(40)
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From this and inequality αλk+1 ≥ θ we get

r(τ) ≤ αλk+1

1
τ

(
αkλk+1 + α

n∑
i=k+1

λi

)
+
(
1− 1

τ

)
αλn

=
λk+1

1
τ

(
kλk+1 +

n∑
i=k+1

λi

)
+
(
1− 1

τ

)
λn

.

(41)

For both possible cases we shown that r(τ) ≤ λk+1

1
τ

(
kλk+1+

n∑
i=k+1

λi

)
+(1− 1

τ )λn
. So, it is the

optimal rate in this family of methods. Note that α could be any positive number. Optimal
distribution is unique and it is:

s ∼ D ⇔ s =

{
ei with probability pi = Aii

Ck
i = 1, 2, . . . , n

ui with probability pn+i = λk+1−λi
Ck

i = 1, 2, . . . , k,
(42)

where Ck = kλk+1 +
n∑

i=k+1

λi. For k = 0 we obtain mRCD, for k = n− 1 we get the optimal

rate
1
n

1
τ

+(1− 1
τ

) 1
n

and rate increases when k increases.

C Results mentioned informally in the paper

C.1 Adding “largest” eigenvectors does not help

In Section 3.1 describing the SSCD method we have argued, without supplying any detail,
that it does not make sense to consider replacing the k “smallest” eigenvectors with a few
“largest” eigenvectors. Here we make this statement precise, and prove it.

Fix k ∈ {0, 1, . . . , n−1} and consider running stochastic descent with the distribution
D defined via

s ∼ D ⇔ s =

{
ei with probability pi = αAii

Ck
i = 1, 2, . . . , n

ui with probability pn−k+i = βi
Ck

i = k + 1, k + 2, . . . , n,
(43)

where Ck = αTr (A) +
n∑

i=k+1

βi and for βi ≥ 0 for i ∈ {1, 2, . . . , k}.

That is, we consider “enriching” RCD with a collection of a n − k eigenvectors
corresponding to the n−k largest eigenvectors of A. We have the following negative result,
which loosely speaking says that it is not worth enriching RCD with such vectors.

Theorem 12. The optimal parameters of the above method are k = n or βi = 0 for all
i = k + 1, . . . , n.

Доказательство. We follow similar steps as in the proof of Theorem 8. In this setting
we have

Es∼D[H] =
1

Ck

(
αI +

n∑
i=k+1

βi
λi
uiu
>
i

)
,

whence

AEs∼D[H] =
1

Ck

(
αA +

n∑
i=k+1

βiuiu
>
i

)
=

1

Ck

(
k∑
i=1

αλiuiu
>
i +

n∑
i=k+1

(βi + αλi)uiu
>
i

)
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and
λmin (AEs∼D[H]) =

αλ1

Ck
≤ αλ1

αTr (A)
=

λ1

Tr (A)
.

It means that the best rate in this family of methods is obtained when k = n or
βi = 0 for all i = k + 1, . . . , n.

So, to use spectral information about n − k last eigenvectors we should use more
complicated distributions (for instance, one may need to replace α by αi).

C.2 Stochastic Conjugate Descent

The lemma below was referred to in Section 2.2. As explained in that section, this lemma
can be used to argue that stochastic conjugate descent achieves the same rate as SSD:
O(n log 1

ε
).

Lemma 13. Let {v1 . . . vn} be an A-orthonormal system:

v>i Avj =

{
1 i = j

0 i 6= j
.

If distribution D consists of vectors vi chosen with uniform probabilities, then λmin(W) = 1
n

Доказательство. That is,

W = A1/2E[H]A1/2 =
1

n

n∑
i=1

A1/2viv
>
i A1/2

v>i Avi
=

1

n

n∑
i=1

A1/2viv
>
i A1/2. (44)

Making a substitution ui = A1/2si, we get

W =
1

n

n∑
i=1

uiu
>
i =

1

n
I, (45)

because {u1 . . . un} is orthonormal system.

D Inexact Stochastic Conjuagate Descent
In Section 2.2 we stated, that we can achieve an optimal rate of stochastic descent by using
uniform distribution over a set of n A-conjugate directions. In this section we consider the
case when A-conjugate directions are computed approximately.

More formally, we consider a system of vectors v1, . . . , vn, which satisfies
∣∣v>i Avj

∣∣ ≤ ε
for i 6= j and v>i Avi = 1 for some parameter ε > 0. Further we’ll call such vectors
ε-approximate A-conjugate vectors.

Now we formalize the idea of using approximate A-conjugate directions in Stochastic
Conjugate Descent, which leads to Algorithm 7.

Algorithm 7 Inexact Stochastic Conjugate Descent (iSconD)
Initialize: x0 ∈ Rn; v1, . . . , vn: ε-approximate A-conjugate directions
for t = 0, 1, 2, . . . do
Choose i ∈ [n] uniformly at random
Set xt+1 = xt − v>i (Axt − b) vi

end for
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For this algorithm we are going to obtain rateO(n log 1
ε
), the optimal rate for stochastic

descent.

D.1 Lemma

Lemma 14. Let S = [v1, . . . , vn], where v1, . . . , vn are ε-approximate A-conjugate vectors.
If ε satisfies

ε <
1

n− 1
(46)

then Ĩ := S>AS is positive definite matrix and

λmin(A1/2SS>A1/2) ≥ 1− ε(n− 1)
1 + ε(n− 1)

1− ε(n− 1)
(47)

λmax(A1/2SS>A1/2) ≤ 1 + ε(n− 1)
1 + ε(n− 1)

1− ε(n− 1)
(48)

Доказательство. For unit vector x we can write

x>Ĩx =
∑
i,l

xixlĨil = 1 +
∑
i,l:i 6=l

xixlĨil ≥ 1− ε
∑
i,l:i 6=l

1

2
(x2

i + x2
l ) = 1− ε(n− 1).

Under condition (46) we get x>Ĩx > 0 for any x, which proves the first part of lemma.
Since S>AS is positive definite, vectors A1/2v1, . . . ,A

1/2vn are linearly independent.
Any unit vector x may be represented as x = A1/2Sα with normalization condition:

1 = x>x = α>Ĩα = α>α +
∑
i,l:i 6=l

Ĩilαiαl, (49)

or
α>α = 1−

∑
i,l:i 6=l

Ĩilαiαl. (50)

Now we can analyse spectrum of matrix A1/2SS>A1/2.

x>A1/2SS>A1/2x = α>S>ASS>ASα = α>Ĩ2α =
∥∥∥Ĩα∥∥∥2

2
=

n∑
i=1

(
n∑
l=1

Ĩilαl

)2

=

=
n∑
i=1

(
αi +

∑
l:l 6=i

Ĩilαl

)2

=
n∑
i=1

α2
i + 2αi

∑
l:l 6=i

Ĩilαl +

(∑
l:l 6=i

Ĩilαl

)2
 .

Using (50) we get

x>A1/2SS>A1/2x = 1 +
∑
i,l:l 6=i

Ĩilαiαl︸ ︷︷ ︸
R1

+
n∑
i=1

(∑
l:l 6=i

Ĩilαl

)2

︸ ︷︷ ︸
R2

= 1 +R1 +R2 (51)

33



To estimate |R1| and |R2| we need to estimate α>α using (50):

α>α ≤ 1 + ε
∑
i,l:i 6=l

α2
i + α2

l

2
= 1 + ε(n− 1)α>α,

which under condition (46) implies that α>α ≤ 1
1−ε(n−1)

. Now we can estimate |R1| and
|R2|.

R1 ≤ ε
∑
i,l:i 6=l

α2
i + α2

l

2
= ε(n− 1)α>α ≤ ε(n− 1)

1− ε(n− 1)
(52)

R2 ≤
n∑
i=1

(n− 1)
∑
l:l 6=i

α2
l ε

2 = ε2(n− 1)2α>α ≤ ε2(n− 1)2

1− ε(n− 1)
(53)

Finally from (51), (52) and (53) we get

λmin(A1/2SS>A1/2) ≥ 1− ε(n− 1) + ε2(n− 1)2

1− ε(n− 1)
= 1− ε(n− 1)

1 + ε(n− 1)

1− ε(n− 1)
(54)

λmax(A1/2SS>A1/2) ≤ 1 +
ε(n− 1) + ε2(n− 1)2

1− ε(n− 1)
= 1 + ε(n− 1)

1 + ε(n− 1)

1− ε(n− 1)
(55)

Corollary 14.1. If ε <
√

2−1
(n−1)

then λmin(A1/2SS>A1/2) > 0 and condition number of
A1/2SS>A1/2 has the following bound:

λmax(A1/2SS>A1/2)

λmin(A1/2SS>A1/2)
<

1 + ε2(n− 1)2

1− 2ε(n− 1)− ε2(n− 1)2
(56)

D.2 Rate of convergence

The following theorem gives the rate of convergence of iSconD.

Theorem 15. Let S = [v1 . . . vn], where {v1 . . . vn} is ε-approximate A-conjugate system.
If ε ≤ 1

3(n−1)
then λmin(W) > 1

3n
, which means that the rate of iSconD is O(n log 1

ε
).

Доказательство. As in Lemma 13, we can show that W = 1
n
A1/2SS>A, where S =

[v1 . . . vn]. Using bound (47) and Corollary 14.1, we get

λmin(W) >
1

n

(
1− ε(n− 1)

1 + ε(n− 1)

1− ε(n− 1)

)
(57)

for small enough ε (see Corollary 14.1). For ε = 1
3(n−1)

we get λmin(W) > 1
3n
.

D.3 Experiment

Figure 6 illustrates the theoretical results about iSonD. For this experiment we generate
random orthogonal matrix V and random symmetric positive definite matrix Ĩ, which
satisfies Ĩii = 1,

∣∣∣Ĩij∣∣∣ ≤ ε for i 6= j. Columns of matrix A−1/2VĨ1/2 were taken as
approximate A-conjugate vectors.
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Figure 6: Expected precision E
[
||xt−x∗||2A
||x0−x∗||2A

]
vs. the number of iterations of iSconD with

different choices of parameter ε.

D.4 Approximate solution without iterative methods

Note that the problem (1) is equivalent to the following problem of finding x such that

Ax = b. (58)

Let S = [v1 . . . vn] be a set of A-conjugate vectors, i.e., S>AS = I. We can now find the
solution to the linear system (58). Since S>b = S>Ax = S>ASS−1x = S−1x, we conclude
that

x = SS>b. (59)

We will now show that unlike in the exact case, using formula (59) with ε-approximate
A-conjugate vectors does not lead to a precise solution of our problem.

Lemma 16. Let S = [v1 . . . vn] be an ε-A-orthonormal system. Let x∗ = A−1b be the
solution of the linear system (58). Let x̂ be an estimate of the solution, calculated with
formula (59) using ε-approximate A-conjugate vectors: x̂ = SS>b. If ε < 1/(n− 1), then

‖x̂− x∗‖A ≤ ε(n− 1)
1 + ε(n− 1)

1− ε(n− 1)
‖x∗‖A (60)

Доказательство. Note that A1/2x̂ = A1/2SS>A1/2A1/2x∗ = ÎA1/2x∗, where Î =
A1/2SS>A1/2. From Lemma 14 we now get that∣∣∣λi(Î− I)

∣∣∣ ≤ ε(n− 1)
1 + ε(n− 1)

1− ε(n− 1)
, (61)

and hence ∥∥∥Î− I
∥∥∥

2
≤ ε(n− 1)

1 + ε(n− 1)

1− ε(n− 1)
. (62)

Therefore,

‖x̂− x∗‖A =
∥∥A1/2(x̂− x∗)

∥∥
2

=
∥∥∥(Î− I)A1/2x∗

∥∥∥
2
≤
∥∥∥Î− I

∥∥∥
2

∥∥A1/2x∗
∥∥

2
≤ ε(n− 1)

1 + ε(n− 1)

1− ε(n− 1)
‖x∗‖A .
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If we choose ε = 1
3(n−1)

, like we did in Theorem 15, we get the following precision:

‖x̂− x∗‖A ≤
2

3
‖x∗‖A , (63)

which is rather poor. However if we use Algorithm 7, we can get approximate solution
with any precision (after enough iterations).

E Inexact SSD: a method that is not a special case of
stochastic descent

In Section 2.1 we defined Stochastic Spectral Descent (Algorithm 2). We now design a
new method which will “try” to use the same iterations, but with inexact eigenvectors of
A. We call w an inexact eigenvector of A if

Aw = λw + ε (64)

for some ε and λ > 0 (inexact eigenvalue). Clearly, any vector can be written in the form
(64). This idea leads to Algorithm 8.

Algorithm 8 Inexact Stochastic Spectral Descent (iSSD)
Initialize: x0 ∈ Rn; (w1, λ1), . . . (wn, λn): inexact eigenvectors and eigenvalues of A
for t = 0, 1, 2, . . . do
Choose i ∈ [n] uniformly at random
Set xt+1 = xt −

(
w>i xt −

w>i b

λi

)
wi

end for

Note that the above method is not equivalent to applying stochastic descent D being
the uniform distribution over the inexact eigenvectors. This is because in arriving at
SSD, we have used some properties of the eigenvectors and eigenvalues to simplify the
calculation of the stepsize. The same simplifications do not apply for inexact eigenvectors.
Nevertheless, we can formally run SSD, as presented in Algorithm 2, and replace the
exact eigenvectors and eigenvalues by inexact versions thereof, thus capitalizing on the fast
computation of stepsize which positively affects the cost of one iteration of the method.
This leads to Algorithm 8.

Hence, in order to analyze the above method, we need to develop a completely new
approach. We will show that Algorithm 8 converges only to a neighbourhood of the optimal
solution.

E.1 Lemmas

Further we will use the following notation: S = [w1 . . . wn] – inexact eigenvectors matrix,
Λ = Diag (λ1 . . . λn) – inexact eigenvalues matrix, E = [ε1 . . . εn] – error matrix, Ã = SΛS>

– estimation of matrix A. We also assume, that inexact eigenvectors are ε-approximate
orthonormal for ε < 1

n−1
, i.e. w>i wi = 1,

∣∣w>i wj∣∣ ≤ ε for i 6= j.
The following lemma gives an answer to the question: how precise is Ã as an estimate

of matrix A?
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Lemma 17. Ã = ÎA− SE>, where matrix Î = SS> satisfies∥∥∥Î− I
∥∥∥

2
≤ ε(n− 1)

1 + ε(n− 1)

1− ε(n− 1)
. (65)

Доказательство. Indeed, the definition of inexact eigenvectors can be written in matrix
form as AS = SΛ +E, from which follows that ÎA = SS>A = SΛS>+SE>. Equality (65)
follows immediately from Lemma 14.

The next lemma gives a general recursion capturing one step of iSSD, shedding light
on the convergence of the method.

Lemma 18. Sequence of {xt} generated by inexact SSD satisfies equality

E ‖xt+1 − x∗‖2
A =

(
1− 1

n

)
E ‖xt − x∗‖2

A +
1

n
E
[
(xt − x∗)>Γ(xt − x∗)

]
+

1

n

(
E ‖xt‖2

EΛ−1E> + x>∗ EΛ−2CE>x∗
)
− 2

n
E
[
(xt − x∗)>SCΛ−1E>x∗

]
,

where Γ = (I− Î)A− SE> − EΛ−1E> + SCS> and

C = Diag
(
w>1 ε1 . . . w

>
n εn
)
. (66)

Доказательство.

‖xt+1 − x∗‖2
A =

∥∥∥∥xt − x∗ − ωwtw>t (xt − x∗) + ω
ε>t x∗
λt

wt

∥∥∥∥2

A

= ‖xt − x∗‖2
A + ω2w>t Awt

(
w>t (xt − x∗)−

ε>t x∗
λt

)2

+2ω(xt − x∗)>Awt

(
ε>t x∗
λt
− w>t (xt − x∗)

)
= ‖xt − x∗‖2

A + ω2(λt + w>t εt)

(
w>t (xt − x∗)−

ε>t x∗
λt

)2

+2ω(xt − x∗)>(λtwt + εt)

(
ε>t x∗
λt
− w>t (xt − x∗)

)
= ‖xt − x∗‖2

A − ω(2− ω)(xt − x∗)>λtwtw>t (xt − x∗) + ω2x
>
∗ εtε

>
t x∗

λt

+2ω
(xt − x∗)>εtε>t x∗

λt
+ ω2w>t εt

(
w>t (xt − x∗)−

ε>t x∗
λt

)2

+2(ω − ω2)(xt − x∗)>wtε>t x∗ − 2ω(xt − x∗)>wtε>t (xt − x∗)
= ‖xt − x∗‖2

A − ω(2− ω)(xt − x∗)>λtwtw>t (xt − x∗) + ‖x∗(ω − 1) + xt‖ εtε>t
λt

−‖xt − x∗‖ εtε>t
λt

+ 2ω(xt − x∗)>wtε>t (x∗(2− ω)− xt) + ω2w>t εt

(
w>t (xt − x∗)−

ε>t x∗
λt

)2

.

Now we can take conditional expectation E[ · | xt].

E[‖xt+1 − x∗‖2
A | xt] = ‖xt − x∗‖2

A −
ω(2− ω)

n
‖xt − x∗‖2

Ã +
1

n
‖x∗(ω − 1) + xt‖2

Σ −
1

n
‖xt − x∗‖2

Σ −

−2ω

n
(xt − x∗)>SE>(xt − (2− ω)x∗) +

ω2

n

n∑
i=1

w>i εi

(
w>i (xt − x∗)−

ε>i x∗
λi

)2

,
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where Σ = EΛ−1E>.
Now we set ω = 1 and use Lemma 17.

E[‖xt+1 − x∗‖2
A | xt] = ‖xt − x∗‖2

A −
1

n
‖xt − x∗‖2

Ã +
1

n
‖xt‖2

Σ −
1

n
‖xt − x∗‖2

Σ −

− 2

n
(xt − x∗)>SE>(xt − x∗) +

1

n

n∑
i=1

w>i εi

(
w>i (xt − x∗)−

ε>i x∗
λi

)2

=

= ‖xt − x∗‖2
A

(
1− 1

n

)
+

1

n
(xt − x∗)>

(
(I− Î)A + SE> − 2SE>

)
(xt − x∗) +

1

n
‖xt‖2

Σ −
1

n
‖xt − x∗‖2

Σ +

+
1

n

n∑
i=1

w>i εi

(
w>i (xt − x∗)−

ε>i x∗
λi

)2

=

=

(
1− 1

n

)
‖xt − x∗‖2

A +
1

n
(xt − x∗)>

(
(I− Î)A− SE> − Σ

)
(xt − x∗) +

1

n
‖xt‖2

Σ +

+
1

n

n∑
i=1

w>i εi

(
w>i (xt − x∗)−

ε>i x∗
λi

)2

=

=

(
1− 1

n

)
‖xt − x∗‖2

A +
1

n
(xt − x∗)>

(
(I− Î)A− SE> − Σ

)
(xt − x∗) +

1

n
‖xt‖2

Σ +

+
1

n
‖xt − x∗‖2

SCS> +
1

n
x>∗
(
EΛ−2CE>

)
x∗ −

2

n
(xt − x∗)>SCΛ−1E>x∗,

where C = Diag
(
w>1 ε1 . . . w

>
n εn
)
. We get

E[‖xt+1 − x∗‖2
A | xt] =

(
1− 1

n

)
‖xt − x∗‖2

A +
1

n
(xt − x∗)>Γ(xt − x∗)

+
1

n

(
‖xt‖2

EΛ−1E> + x>∗ EΛ−2CE>x∗ − 2(xt − x∗)>SCΛ−1E>x∗
)
,

where Γ = (I− Î)A− SE> − EΛ−1E> + SCS>.

The following lemma describes which inexact eigenvalues are optimal for a fixed set
of inexact eigenvectors.

Lemma 19. Let wi be fixed. Then the choice

λi = w>i Awi (67)

minimizes ‖εi‖2 in λ, where εi := ‖Awi − λwi‖2. Moreover, for this choice of λi we get
w>i εi = 0.

Доказательство. Minimizing ‖Awi − λwi‖2
2 in λ gives (67). For this choice of λi we get

w>i εi = w>i Awi − λiw>i wi = w>i Awi − w>i Awi = 0.

E.2 Convergence

Choosing eigenvalues as defined in (67), and in view of (66), we see that C = 0. From this
and Lemma 18 we get

E ‖xt+1 − x∗‖2
A =

(
1− 1

n

)
E ‖xt − x∗‖2

A +
1

n
E
[
(xt − x∗)>Γ(xt − x∗)

]
+

1

n
E ‖xt‖2

EΛ−1E> ,

(68)
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where Γ = (I− Î)A− SE> − EΛ−1E>. From the Cauchy–Schwarz inequality we get

1

n
E ‖xt‖2

EΛ−1E> =
1

n
E ‖xt − x∗ + x∗‖2

EΛ−1E> ≤
2

n
E ‖xt − x∗‖2

EΛ−1E> +
2

n
E ‖x∗‖2

EΛ−1E> ,(69)

which leads to

E ‖xt+1 − x∗‖2
A ≤

(
1− 1

n

)
E ‖xt − x∗‖2

A +
1

n
E
[
(xt − x∗)>Q(xt − x∗)

]
+

2

n
‖x∗‖2

EΛ−1E> ,

(70)
where Q = (I− Î)A− SE> + EΛ−1E>. Inequality (70) implies that

E ‖xt+1 − x∗‖2
A ≤ E ‖xt − x∗‖2

A +
q − 1

n
E ‖xt − x∗‖2

A +
r0

n
, (71)

where q = max z>Qz
z>Az

, r0 = 2 ‖x∗‖2
EΛ−1E> .

If the errors ε1, . . . , εn and ε are small enough, we can make q and r0 arbitrarily small
for fixed x∗. From (71) we can see that E ‖xt+1 − x∗‖2

A is going to decrease as long as

E ‖xt − x∗‖2
A ≥

r0

1− q
. (72)

Hence, for small enough ε1, . . . , εn and parameter ε, iSSD will converge to a
neighborhood of the optimal solution, with limited precision (72).
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