Структурное обучение для генерации моделей

Бочкарев Артем Максимович Научный руководитель: Стрижов В. В.

Московский физико-технический институт Вычислительный центр им. А.А. Дородницына Российской академии наук

6 июня 2018 г.

Введение

Проблема

- Генетический алгоритм символьной регрессии находит точные модели аппроксимации, но требует значительных вычислительных ресурсов
- При аппроксимации выборки не учитываются модели, полученные на похожих задачах

Цель работы

- Автоматизировать построние моделей аппроксимации
- Ускорить нахождение моделей символьной регрессии

Методы

- Мета-обучение
- Прогнозирование структуры модели в виде дерева

Литература

• Символьная регрессия

- Kulunchakov, A. S., & Strijov, V. V. (2017). Generation of simple structured information retrieval functions by genetic algorithm without stagnation. Expert Systems with Applications, 85, 221-230.
- ▶ Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection. *Statistics and computing*, 4(2), 87-112.

• Мета-обучение

- ▶ Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning. *arXiv preprint arXiv:1611.01578*.
- ▶ Lemke, C., Budka, M., & Gabrys, B. (2015). Metalearning: a survey of trends and technologies. *Artificial intelligence review, 44(1), 117-130*.
- Прогнозирование структуры деревьев
 - ▶ Alvarez-Melis, D., & Jaakkola, T. S. (2016). Tree-structured decoding with doubly-recurrent neural networks.
 - ▶ Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction Tree Variational Autoencoder for Molecular Graph Generation. *arXiv* preprint *arXiv*:1802.04364.

Задача аппроксимации

Пусть \mathbf{X} — матрица объект-признак, а \mathbf{y} — вектор зависимой переменной.

Задача аппроксимации должна удовлетворять следующим условиям.

Требования к задаче аппроксимации

- **х**; неслучайны
- ullet $\{\mathbf{x}_i\}_{i=1}^n$ упорядоченное множество
- **у** случайны
- $y_i = f(\mathbf{x}_i) + \varepsilon_i$
 - $ightharpoonup arepsilon_i$ независимы
 - hill $arepsilon_i$ гомоскедастичны
 - $\epsilon_i \sim \mathcal{N}(0, \sigma)$

Описание задачи аппроксимации – выборка $D = (\mathbf{X}, \mathbf{y}).$

В качестве моделей для задачи аппрокисмации рассматривается пространство \mathfrak{F} моделей символьной регрессии.

Модель символьной регрессии

• Порождается грамматикой G:

$$g \to B(g,g)|U(g)|S$$

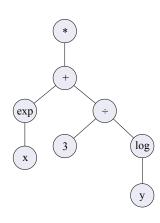
где B — бинарные функции (+,*), U — унарные функции (sqrt, log, exp), а S — множество переменных.

- $f = g_1 \circ g_2 \circ \cdots \circ g_k$
- ullet Модель символьной регрессии f представляется в виде дерева Γ_f

Дерево Γ_f удовлетворяет следующим условиям:

Дерево Γ_f

- Символ * является корнем дерева;
- ② Листья Γ_f содержат переменные $x \in S$.
- **3** Узлы дерева v содержат соответствующие функции g;
- $\# \mathsf{child}(v) = \mathsf{arity}(g);$
- **5** Если v_j дочерняя вершина к v_j , то $dom(g_j) \supset cod(g_i)$;
- **5** Дочерние вершины g упорядочены;



$$f = e^x + \frac{3}{\log(y)}$$

Выборка мета-обучения

Набор пар $\mathfrak{D}=\{D_i=(\mathbf{X}_i,\mathbf{y}_i),f_i\}_{i=1}^m$ назовем мета-выборкой. Она удовлетворяет условиям:

- ullet dom $(\mathbf{x}_i) = \mathsf{dom}(\mathbf{x}_j) \ \forall i,j \ (все <math>\mathbf{X}$ имеют одну область определения)
- ullet f_i является оптимальной моделью для D_i в пространстве ${\mathfrak F}$:

$$f_i = \underset{f \in \mathfrak{F}}{\operatorname{arg \, min}} \, \mathsf{MSE}(\mathbf{y}_i, f_i(\mathbf{X}_i))$$

Задача мета-обучения

Для мета-выборки $\mathfrak D$ найти оптимальную мета-модель $\mathfrak g:D o f$, минимизирующую ошибку на всех задачах аппроксимации:

$$\mathcal{L}(\mathfrak{g},\mathfrak{D}) = \frac{1}{m} \sum_{i=1}^{m} MSE(\mathbf{y}_i, \mathfrak{g}(D_i)(\mathbf{X}_i))$$

Решение

Представление модели

Матрица смежности \mathbf{Z}_f для дерева Γ_f .

Представление задачи аппроксимации

Вектор $\mathbf{d} = [\text{vec}(\mathbf{X}), \mathbf{y}]^T$ является представлением выборки для задачи аппроксимации.

Декомпозиция мета-модели

Мета-модель $\mathfrak{g}:D\to f$ является отображением из пространства векторов \mathbb{R}^n в пространство матриц смежности деревьев \mathbb{Z} . Мета-модель \mathfrak{g} является суперпозицией двух функций:

$$f = \mathfrak{g}(D) = g_{\mathsf{rec}}(g_{\mathsf{clf}}(D))$$

Решение

Классификация

Функция классификации $g_{\text{clf}}:\mathbb{R}^n\to\mathbb{P}$ является отображением из пространства представлений задачи аппроксимации в пространство матриц вероятностей.

$$g_{\mathsf{clf}}(\mathbf{d}) = \mathbf{P}_f,$$

где \mathbf{P}_f – матрица вероятностей ребер в дереве Γ_f . g_{clf} – алгоритм классификации (логистическая регрессия, нейронная сеть).

Восстановление структуры

Функция восстановления структуры $g_{\rm rec}: \mathbb{P} \to \mathbb{Z}$ это отображение из пространства матриц вероятностей ребер в пространство матриц смежности дерева. Предлагается два метода восстановления структуры дерева $g_{\rm rec}$:

- Жадный алгоритм
- Динамическое программирование

Восстановление структуры

Жадный алгоритм

Алгоритм начинает восстановление из корня *. На каждом шаге достраивается ребро с наибольшей вероятностью. Конец работы, если достигли максимальной глубины дерева или в листьях только переменные.

Динамическое программирование

На каждом шаге задача разбивается на подзадачи, соответствующие возможным поддеревьям, для каждой ищется решение, максимизирующее s(f).

- $s(f) = \prod_{e \in f} P_e$ правдоподобие дерева;
- $s(f) = \frac{1}{n} \sum_{e \in f} P_e$ средняя вероятность ребра в дереве.

Параметризация

Чтобы метод работал на реальных данных, необходима параметризация. Пусть лучшая непараметрическая модель представима в суперпозиции $f=f_1\circ\cdots\circ f_n$.

Параметризация

Введем параметры для каждой элементарной функции f_i :

$$f_i(\mathbf{x}, \alpha_{i1}, \alpha_{i0}) = \alpha_{i1}f_i(\mathbf{x}) + \alpha_{i0}.$$

Параметрами суперпозиция f являются параметры ее элементарных функций:

$$f(\mathbf{x}) \to f(\mathbf{x}, \alpha)$$

Полученная функция дифференцируема, вектор параметров α находится градиентным спуском.

Обзор метода

Обучение

- Удалить константы из моделей f
- $oldsymbol{2}$ Обучить $g_{
 m clf}$ на предсказание матрицы вероятностей $oldsymbol{P}$

Тестирование

- f 0 Предсказать матрицу f P используя $g_{
 m clf}$
- $oldsymbol{2}$ Восстановить модель f с помощью g_{rec}
- \odot Параметризовать модель f
- Найти оптимальные параметры α используя метод градиентного спуска

Вычислительный эксперимент

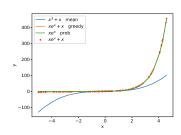
Сегменты сгенерированного временного ряда, порожденные случайными моделями символьной регрессии.

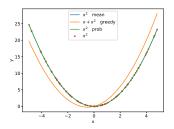
Схема эксперимента

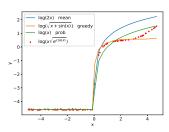
- f 0 Сгенерировать pprox 5000 1-D задач аппроксимации
 - X равномерно распределен на [-5,5]
 - f случайная модель символьной регрессии
 - $y = f(X) + \mathcal{N}(0, 0.05)$
- Разделить задачи аппроксимации на обучение и контроль
- \odot Обучить $g_{
 m clf}$
- **1** Предсказать матрицы вероятнстей ${f P}$ для тестовых задач и восстановить модели с помощью $g_{\rm rec}$

Непараметрический случай

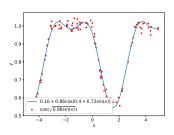


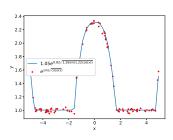


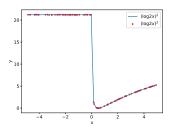


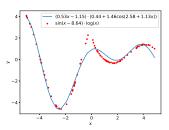


Параметрический случай









Результаты

Непараметрический случай

	Random Forest	Logistic regression		
Greedy algorithmr	5.45	5.81	6.3	
DP (tree likelihood)	5.41	5.65	5.97	
DP (mean probability)	5.32	5.72	6.12	

Параметрический случай.

	Random Forest	Logistic regression	
Greedy algorithm	7.02	7.13	7.35
DP (tree likelihood)	6.88	6.93	7.01
DP (mean probability)	6.92	6.94	6.99

Реальные данные

Вычислительный эксперимент проводился на трех выборках: временные ряды с акселерометра, курса валют и стоимости акций на бирже. Сравнивались результаты и время работы предложенного метода и генетического алгоритма.

Результаты на реальных данных

	Акселерометер		Курс валют		Стоимость акций	
	MSE	t, ceĸ	MSE	t, ceĸ	MSE	t, ceĸ
Символьная регрессия	0.052	5.12	0.012	6.02	3.13	6.34
Мета-модель	0.054	0.23	0.014	0.28	3.28	0.31

Заключение

- Предложен метод предсказания структуры дерева модели символьной регрессии
- Метод мета-обучения используется для прогнозирования оптимальных моделей аппроксимации
- Вычислительный эксперимент на реальных данных показал значительный прирост скорости в сравнении с генетическим алгоритмом