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Atari 2600

Figure: Atari 2600 with joystick

CPU: 1.19MHz

RAM: 128 bytes

Controller: stick with 8 positions, 1 button (18 actions)
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Figure: Atari 2600 game: Breakout
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Reinforcement Learning

agent (which sees states and rewards and decides on actions)

environment (which sees actions, changes states and gives

rewards)

The agent's goal is to maximize the discounted sum of rewards

during the game

blog.deepsense.ai
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Environment E (can be stochastic)

Action at ∈ A = {1, . . . ,K}
Image of emulator's internal state xt ∈ Rd

Observation st = x1, a1, x2, a2, . . . , xt−1, at−1, xt

Future discounted return: Rt =
T∑

t′=t

γt
′−trt′
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Q-values

Let's assume that the agent's strategy (the choice of the

action in a given state) is �xed.

Q-value of a state-action pair (s, a) is the cumulative

discounted reward the agent will get if it is in a state s,
executes the action a and follows his strategy from there on:

Q(s, a) = max
π

Es′∼E
[
Rt

∣∣st = s, at = a, π
]

If a strategy is optimal, the following holds:

Q(st , at) = Es′∼E

[
rt + γmax

a′
Q(st+1, a

′)
∣∣st , a]
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Q-learning

If the environment E is not stochastic:

Q(st , at) = rt + γmax
a′

Q(st+1, a
′)

Such equation leads to a simple algorithm (Q-learning):

blog.deepsense.ai
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Q-learning

Q-learning:

solves the problem for simple games (like Tic-Tac-Toe)

is a correct algorithm

but not an e�cient one
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Q-learning optimization

We need some form of generalization: when we learn about the

value of one state-action pair, we can also improve our knowledge

about other similar state-actions.

The deep Q-learning algorithm uses the convolutional neural

network as a function approximating the Q-value function.
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Deep Q-Network

Figure: Schematic illustration of the convolutional neural network. Input

- 210× 160 images in colour. Output - up to 18 dimensional vector

doi:10.1038/nature14236
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Loss function

Let us consider:

θ is the vector of Deep Q-Network's weights

Q(s, a; θ) is the approximate of Q-value.

A Q-network can be trained by minimising a sequence of loss

functions Li (θi ) at iteration number i :

Li (θi ) = E(s,a)∼ρ(·)

[
(yi − Q(s, a; θi ))

2

]
,

where yi = Es′∼E
[
r + γmaxa′ Q(s ′, a′; θi−1)

∣∣s, a] and ρ(s, a) is a
behaviour distribution.
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Loss function gradient

Di�erentiating the loss function with respect to θi we get:

∇θiLi (θi ) = E(s,a)∼ρ(·);s′∼E [{r + γmax
a′

Q(s ′, a′; θi−1)−

Q(s, a; θi )} · ∇θiQ(s, a; θi )] (1)

Rather than computing the full expectations in the above gradient,

it is often computationally expedient to optimise the loss function

by stochastic gradient descent.
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Experience replay

Agent's experiences at each time-step et = (st , at , rt , st+1)

Data-set D = e1, . . . , eN pooled from many episodes into

replay memory

Function φ(s) produces �xed length representation of history

(input to neural network)
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Algorithm: Deep Q-learning with Experience Replay

https://arxiv.org/pdf/1312.5602.pdf
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Results

doi:10.1038/nature14236
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Results

doi:10.1038/nature14236
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DQN + RAM

The idea is to use RAM (128 bytes) instead of game screens

This makes task easier as input is much smaller

The information about the game may be hard to retrieve

The results are comparable (in two games higher, in one lower)
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Epsilon-greedy strategy

The �rst decisions, made with little information, would be

reinforced and followed in the future, because we'd stick to these

actions for the �rst states, as their value estimation would be

positive (and for the other actions would be nearly zero).

The solution is to use epsilon-greedy strategy: this means that at

any time with some small probability ε the agent chooses a random

action instead of the best action according to Q-value.

Epsilon decay is also useful: we start learning from high ε ≈ 1 and

gradually decrease it to a small value.
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Frameskip

Console generates 60 FPS

The idea is to repeat one action over N frames and skip N − 1

frames.

Makes learning few times faster.

N can be 4, 8 or even 30 in some games
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Reference

Deepsense.ai blog

Project at github

Playing Atari with Deep Reinforcement Learning

Human-level control through deep reinforcement learning
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