Dense correspondence prediction in computer vision

Mikhail Shvets

November 6, 2016

Mikhail Shvets

Dense correspondence prediction in computer

November 6, 2016 1

1 / 19

- Structure from motion
- Optical flow, scene flow
- Object detection and tracking
- Scene understanding

- Brute force:
 - model selection (translation, rotation), parametrization
 - quality function selection (correlation)
- Pyramides (Laplacian, Gaussian)

Interest points

- Find interest points
 - repeatability
 - saliency
 - locality
- Find transformation that matches these points

Harris detector

$$E(u, v) = \sum_{x,y} w(x, y) [I(x + u, y + v) - I(x, y)]^2$$

For small $u, v: E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$, where
$$M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} - \text{matrix with characteristic values } \lambda_1, \lambda_2.$$
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R \text{ as } M \text{ is symmetric.}$$

• λ_1, λ_2 are small – monotonic area

- $\lambda_1 \ll \lambda_2$ horizontal edge
- $\lambda_1 \gg \lambda_2$ vertical edge
- $\lambda_1 \sim \lambda_2 \mathsf{edge}$

$$F = \det M - k(traceM)^2$$

< 🗗 🕨 🔸

3

Descriptors

Build feature vector for each interest point

Scale-Invariant Feature Transform (SIFT)

Mikhail Shvets

Dense correspondence prediction in computer

SIFT Flow¹

Objective

- Match SIFT descriptors along flow vectors
- Smooth flow field
- Discontinuities agreeing with object boundaries

Let p = (x, y) – grid coordinate and $w(p) = (u(p), v(p)) \in \mathbb{Z}^2$ – flow vector.

$$s_1, s_2$$
 – SIFT images ($h imes w imes 128$).

$$E(w) = \sum_{p} \min \left(\|s_1(p) - s_2(p + w(p))\|_1, t \right) + \sum_{p} \eta \left(\|u(p)\| + \|v(p)\| \right) +$$

$$+\sum_{p,q\in\epsilon}\min\left(\alpha\|u(p)-u(q)\|,d\right)+\sum_{p,q\in\epsilon}\min\left(\alpha\|v(p)-v(q)\|,d\right)$$

¹Ce Liu, Jenny Yuen, and Antonio Torralba. "Sift flow: Dense correspondence across scenes and its applications". In: *IEEE transactions on pattern analysis and machine intelligence* 33.5 (2011), pp. 978–994.

Mikhail Shvets

Dense correspondence prediction in computer

November 6, 2016 8 / 19

Inference method: loopy belief propagation.

Note: in the objective pairwise terms u and v are decoupled, which enables efficient inference, still $\mathcal{O}((HW)^2)$.

Coarse to fine approach

Mikhail Shvets

Dense correspondence prediction in computer

November 6, 2016 10 / 19

э

Convolutional neural networks

L-layer CNN: $\langle \mathcal{I}, \mathcal{W}, * \rangle$, where $\mathcal{I} = \{I_l\}_{l=1}^L$, $\mathcal{W} = \{W_l\}_{l=1}^L$ $W \in \mathbb{R}^{c \times w \times h}$, $l \in \mathbb{R}^{c \times W \times H}$ and $w \ll W$, $h \ll H$.

$$V(x,y,t) = \sum_{i=x-\delta}^{x+\delta} \sum_{j=y-\delta}^{y+\delta} \sum_{s=1}^{S} W(i-x+\delta,j-y+\delta,s,t) I(i,j,s)$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Dilated convolutions²

²Fisher Yu and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions". In: *arXiv preprint arXiv:1511.07122* (2015) → ((2015) → ((2015) → ((2015) → ((2015) → ((2015) → ((2015)

Mikhail Shvets

Dense correspondence prediction in computer

November 6, 2016 12 / 19

Predict flow and matchability

$$L_{flow} = \sum_{p:M(p)=1} \min(\|\hat{F}(p) - F(p)\|_2^2, T^2)$$

Cycle consistency 3

$$L = L(F_{s_1s_2}, \hat{F}_{s_1r_1} \circ \hat{F}_{r_1r_2} \circ \hat{F}_{r_2s_2})$$

where \circ operation is defined as

$$\hat{F}_{a,b}(p)\circ\hat{F}_{b,c}(p)=\hat{F}_{a,b}(p)+\hat{F}_{b,c}(p+\hat{F}_{a,b}(p))$$

³Tinghui Zhou et al. "Learning Dense Correspondence via 3D-guided Cycle Consistency". In: *arXiv preprint arXiv:1604.05383* (2016).

Consistency

Could be consistent but wrong...

Mikhail Shvets

Dense correspondence prediction in computer

November 6, 2016

15 / 19

Cycle Consistency results

Source

SIFT flow

Mikhail Shvets

Dense correspondence prediction in computer

Cycle Consistency results

Source

SIFT flow

Cycle Consistency results

Mikhail Shvets

Dense correspondence prediction in computer

November 6, 2016 18 / 19

- Standard pipeline:
 - Detect interest points
 - Extract features
 - Match features
- Efficient dense matching: inference on graphical models
- Neural Networks: straightforward prediction
- Little supervision: cycle consistency