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Abstract — Usually, when speaking about dependence 
estimation in big sets of empirical data, it is adopted to suggest 
that the set of precedents does not fit in the memory of one 
computer, and some technology of distributed computing is 
required. However, even if the entire training set can be placed 
in one computer, the question remains how much time the 
training process will take. We keep here to the generalized linear 
methodology of dependence estimation, which covers, in 
particular, both regression estimation and pattern recognition. It 
is assumed that the training information (empirical data set) is a 
rectangular objects/features table. We consider here two kinds of 
algorithms of regularized empirical risk minimization, which are 
mutually opposite in their computational complexity relative to 
the number of features and the number of training objects, i.e., 
to the two sizes of the objects/features table. The computational 
complexity of one of them is linear with respect to the number of 
objects and polynomial relative to the number of features, 
whereas the other algorithm is of polynomial complexity in the 
number of features and linear in that of training objects. Thus, 
for any combination of the two sizes of the objects/features table, 
we have an algorithm whose computational complexity is linear 
relative to the greater of two sizes and polynomial with respect to 
the smaller of them. This property is especially favorable for the 
typical situation when the number of available features is much 
greater than that of training examples.  

Keywords— Dependence estimation, empirical risk, 
regularization, basic set of real-world objects, training set, object 
features, computational complexity.  

I. INTRODUCTION  

A. The Generalized Linear Model of a Dependence  
Supervised regression analysis and pattern recognition are 

two most typical cases of dependence estimation from 
empirical data [1]. In both problems it is required to recover 
the unknown dependence of a hidden variable y∈  
associated with any real-world object on the observable 
vector of its numerical features 1( )T n

nx x= ∈x   , when only a 
trainng set of real-world objects is available  
 { } ,1 ,( , ), 1,..., , ( ) , .T n

j j j j j ny j N x x y= = ∈ ∈x x      (1) 
The only difference between regression and pattern 
recognition is that the target variable in regression is an 
arbitrary real number y∈ =  , whereas in recognition it is 
categorical, for instance, takes one of two values 

{ 1,1}y∈ = − .  

The commonly adopted approach to these problems 
implies finding a linear decision rule, respectively,  
(a) ˆ( | , ) :T ny b b= + →x a a x   , or  (2) 

(b) ( ) { }1,  0ˆ( | , ) : 1,11, 0
T

n
T

by b b
+ >= → −− + <

a xx a a x  .  (3) 

which would be applicable to any new real-world object 
represented by its feature vector n∈x  .  

These are two particular cases of John Nelder’s 
Generalized Linear Model of dependencies [2,3], in which 

the goal variable of any kind y∈  is related to the linear 
regression via the so-called link function:  

Generalized Linear M( | , ) :
( , ):

odel,
link function.

T nz b b
q y z +

= + → −
× →

 −
 x a a x   

   
 (4) 

In what follows, we shall call the real-valued variable  
( | , ) Tz b b= + ∈x a a x  ,  , n∈x a  ,  b∈ , (5) 

the generalized linear feature of the real-world object 
represented by the feature vector n∈x  . The link function 

( , )q y z , loss function in Vladimir Vapnik’s terminology [4], is 
to be chosen by the observer and is meant to express his/her 
suggestion on how the Nature would penalize the estimate of 
the unknown y  for an object n∈x   represented by its 
generalized numerical linear feature ( | , )z bx a .  

Since the link function is chosen, the hyperplane 
parameters ( , )ba  completely define the decision rule:  

( )ˆ( | , ) arg min , ( | , )
y

y b q y z b
∈

=x a x a


. (6) 

Particular dependence estimation problems differ from each 
other only in the choice of the link function, specifically:  
•  for regression y∈ , 2( , ) ( ) ,q y z y z= − ˆ( | , ) ;Ty b b= +x a a x  (7) 
•  for SVM pattern recognition 1y = ± ,  

( , ) max(0, 1 )q y z yz= − , {  1, 1,ˆ( | , ) 1, 1;
T

T
by b b

+ ≥= − + <
a xx a a x  (8) 

•  for logistic regression pattern recognition 1y = ± , 

[ ]( , ) ln 1 exp( )q y z yz= + − ,   1, 1,ˆ( | , )
1, 1.

T

T
by b
b

+ ≥= − + <
a xx a
a x

  (9) 

B. The Principle of Empirical Risk Minimization  
From the viewpoint of the Generalized Linear Approach 

to dependence estimation, the quality of the hyperplane 
parameters ( , )ba  is the average value of the loss 

( , )Tq y b+a x  over all the real-world objects ( , ) ny ∈ ×x   , 
which is usually called the average risk of error, let it be 
denoted as ( , )A R bav . However, average risk minimization 

( , ) min( , )A R b b→a av  is problematic because the properties 
of the hypothetical universe may be inexhaustibly complex.  

Instead, it is commonly adopted to approximately 
estimate the average risk from the training set (1) as the 
arithmetic mean of the attainable loss values. This is the 
famous criterion of Empirical Risk minimization [4], which 
in our terms has the form  

( )
1

1( , ) ( , ) min ,
N

T n
j j

j

EmpR b q y b b
N =

= + → ∈ ∈∑a a x a   . (10) 

This optimization problem is convex if the link function 
( , )q y z  is chosen as convex with respect to z , as it is just the 

case with regression (7) and pattern recognition (8)-(9).  
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C. Selective ridge regularization  
When the practical problem originates from a medical or 

industrial domain, the available amount of data N  is usually 
limited, whereas the observer tries to take into account as 
many features n  as possible in fear of losing important 
outward exhibitions of entities. Therefore, the amount of 
features often far dominates that of training objects n N . 
If so, the problem of empirical risk minimization (10) 
becomes ill posed – there exist a continuum of models ( , )ba  
that totally approximate the training data.  

In this paper, we apply the selective ridge regularization 
first proposed in [5,6]  

2 2
1

,
1 1

2 | |, | |( , | , ) , | |

             , min( , ),

n
i i

i ii
N n

n
j i j i

j i

a aJ b a a

q y a x b b
=

= =

µ ≤ µ γ µ = γ + µ + > µ 
 + → ∈ ∈ 
 

∑

∑ ∑

a

a  
 (11) 

where 0µ ≥  is the selectivity parameter. If 0µ = , the regu-
larization function coincides with the usual ridge regulariza-
tion ( , ) minT EmpR bγ + →a a a . When the selectivity pa-
rameter grows 0µ > , the penalty | |iaµ  drives to zero the 
coefficients at redundant features, which weakly contribute 
to diminishing of the empirical risk. Further growth of the 
selectivity parameter µ →∞  results finally in complete 
zeroing of all the coefficients. 

D. The aim and structure of the paper  
Since the link function ( , )q y z  (7)-(8) is assumed to be 

convex with respect to z∈  for each y∈ , the criterion of 
regularized empirical risk minimization ( , ) minJ b →a   
remains be convex as a whole. The aim of this paper is 
studying the computational complexity of the problem of  
selective regularized empirical risk minimization for the 
opposite ratios of two sizes of the objects/features table 
n N≤  or n N>  – the number of features does not exceed 
that of objects or vice versa, there are more features in the 
model than objects in the training set.  

II. THE STRAIHTFORWARD FORMULATION OF THE 
REGULARIZED EMPIRICAL RISK MINIMIZATION PROBLEM  

The criterion of selctive regularizaed empirical risk 
minimization (11) is conxex function of 1n +  variables 

1( , ) ( ,..., , )nb a a b=a . If considered as a convex problem of 
general kind, it is imossible to numerically solve it with lower 
computational complexity than polynomial with respect to the 
number of features n .  

Let us now to investigate the computational complexity 
relative the training set size.  

The specificity of the objective function to be minimized 
is that the empirical risk 

1
( , )N

j jj
q y z

=∑  is sum of convex 

functions of 1n +  variables ,1

n
j i j ii

z a x b
=

= +∑  being, in their 
turn, linear functions of 1( ,..., , )na a b . Let ( , )q y z  be chosen 
as twice differentiable functions of z∈  except a finite 
number of points:  

2

2( , ) ( , ), ( , ) ( , )q y z q y z q y z q y zz z
∂ ∂′ ′′= =
∂ ∂

. (12) 

Then the gradient and Hessian of the sum at any point ˆˆ( , )ba  
are linear combinations of respective vectors and matrices  

1 1
2

1 1

ˆ ˆ( , ) ( , ) ,

ˆ ˆ( , ) ( , ).

N N
j j j j jj j

N N T
j j j j j jj j

q y z q y z

q y z q y z
= =

= =

′∇ =

′′∇ =

∑ ∑
∑ ∑

a

aa

x

x x
  (13) 

This means that computation of the gradient and hessian of 
the objective function is of linear complexity in the number 
of training objects.  

Thus, minimization of the regularized empirical risk in 
its original formulation is of polynomial comutational 
complexity in the number od features and of linear 
comlexity in the trainng set size.  

Such a combination of two kinds of computaional 
complexity is favorable if the training set contains very many 
objects N  repesented by a small number of features n . 
However, this kind of data is rather an excepcion than the 
rule. In practice, the inverse case is much more typical – a 
moderate training set size N , because it is limited by the 
difficulty of testing the nature, and a huge dimension of the 
feature space n N , which is bounded only by the 
imagination of the observer. As a result, the polynomial 
computatinal compltxity with respect to the dimension of the 
feature space unacceptable in practice.  

As an alternative to the straightforward criterion (11), we 
consider here the dual formulation of the regularized 
empirical risk minimizaion problem.  

III. THE DUAL FORMULATION OF THE REGULARIZED 
EMPIRICAL RISK MINIMIZATION PROBLEM  

A. Two Groups of Variables in the Criterion of Regularized 
Empirical Risk  
The parameter of the generalized linear model of the 

sought-for dependence (4) is the vector argument 
1( )T n

na a= ∈a    of the regularized empirical risk to be 
minimized (11). Let us consider the generalized linear 
features of all the training objects (5)  

,
1

n
T

j j i j i
i

z b a x b
=

= + = +∑a x , 1,...,j N= ,  (14) 

as an additional group of variables 1( )T N
Nz z= ∈z   . Since 

the variables of these two groups are bound to each other by 
the system of equalities (14), the idea is to replace the 
straightforward criterion ( , )J ba  (11), n∈a  , by some 
equivalent objective function ( )W λ  whose argument would 
be vector 1( )T N

N= λ λ ∈ λ  of a smaller dimension 
N n< .  

The dimension N  is just the number of equalities that 
bind vector 1( )T N

Nz z= ∈z    to the vector =a  

1( )T n
na a ∈  . These equalities suggest another formula-

tions of the empirical risk minimization problem (11):  

( )
2 2

1 1
1 1

,
1

2 | |, | |
( , ) min

, | |
                                                    ,..., , , ,..., ,

, 1,..., ,

n N
i i

j j
i ii j

n n N

j i j i
i

a a
q y z

a a
a a b z z

z a x b j N

= =

=

µ ≤ µ  γ + →  µ + > µ 

 = + =


∑ ∑

∑
 (15) 

We call this formulation disjoint, because the objective 
function is sum of two partial criteria, which are functions of, 
respectively, the direction vector n∈a   and the generalized 
features of the training objects 1( )T N

Nz z= ∈z    (14), in 
contrast to the initial unified formulation (11).  



B. Properties of the disjoint empirical risk minimization 
problem  
Before solving the disjoint problem (15), we have to 

introduce an additional notion, let it be called the lower 
bound of the link function:  

 1( , | ) inf ( , )
2z

y q y z z
∈

 
ϕ λ γ =− +λ γ 

, λ∈ .  (16) 

The definition of this function contains the operation “inf”, 
whose result, in the general case, is finite not for all the values 
of variable λ∈ . Since in this paper function ( , )q y z  is 
assumed to be convex with respect to z∈  for each y∈ , 
its derivative is nondecreasing function. If, in addition, 

( , )q y z  is chosen as differentiable by z  except a finite 
number of points in  , at which the left-hand or right-hand 
derivative exists, the range of the respective derivatives is 
known, let it be denoted as  

inf sup
( , ) ( , ) ( , )( ) inf ( ) sup .

z z

q y z q y z q y zg y g y
z z z∈ ∈

∂ ∂ ∂
= ≤ ≤ =

∂ ∂ ∂ 
 (17) 

It is easy to see that function ( , | )yϕ λ λ  is convex in 
λ∈  for any link function ( , )q y z , z∈ .  

C. The Lagrangian of the disjoint problem  
The necessary and sufficient minimum condition for the 

convex equality-constrained objective function (15) is the 
saddle point of the respective Lagrangian as function of N  
Lagrange multipliers 1( ,..., )Nλ λ  at constraints:  

2 21 1 1
1

,
1 1 1

1
1 1

1 1

2 | |, | |1( ,..., , , ,..., , ,..., )
, | |2

1 ( , )
2

1( , ..., ) ( , )
2

min( ,..., , ,

n
i i

n N N
i ii

N N n

j j j i j i j
j j i

N N

i i N j j j j j
j j

n

a a
L a a b z z

a a

q y z a x b z

L a b q y z z

a a b z

=

= = =

= =

µ ≤ µ λ λ = + µ + > µ 
 

− λ + − = γ  
   

λ λ − λ + + λ →   γ  

→

∑

∑ ∑ ∑

∑ ∑
,..., ),

where0, 1,..., ,
N

j

z
j N


∂ ∂ λ = =

(18) 

( )
( )

,1
1 2 2

,1

2 | | 2 ,  | |1( , ..., ) .
2 2 , | |

N
i j j i i ij

i i N N
i j j i i ij

a x a a
L a

a x a a
=

=

 µ − λ ≤ µ λ λ =  µ + − λ > µ 
 

∑
∑

 (19) 

Assume the Lagrange multipliers  be fixed  1( ,..., )Nλ λ =  

1
ˆ ˆ( ,..., )Nλ λ , and consider the requirement 1min( ,..., ,na a→  

1, ,..., )Nb z z  in (18). Minimization by 1( ,..., )na a  results in n  
single conditions for each variable in accordance with (19) 

( )
( )

2
2

,1
2

2
, ,1 1

0,              ,
ˆ .

, ,

N
j j ij

i N N
j j i j j ij j

x
a

x x

=

= =

 λ ≤µ=
 λ λ >µ


∑
∑ ∑

1,...,i n= ,  (20) 

and minimization by b  yields 
1

0N
jj=

λ =∑ .  (21) 

D. The Low-Dimensional Dual Problem  
It can be shown that (19) and (20) jointy give in (18)  

( )
1 1

1 1 1,..., , , ,...,
2

2
,1

1

1

min ( ,..., , , , ..., , , ..., )

1 max 0,
2

1min ( , ) 0, 1,..., .
2

n N

j

n N Na a b z z
n

N
j j ij

i

N

j j j jzj j

L a a b z z

x

q y z z j N

=
=

∈
=

− λ λ =

  λ − µ −    
    ∂

+λ → = =     γ ∂λ    

∑ ∑

∑ 

  

With respect to (16), (17) and (21), this yields the condition  










  

2
2

1 ,
1 1

1
1

sup inf
1

1( ,..., | , ) max 0,
2

( , | ) min( ,..., ),
1 1      0, ( ) ( ).
2 2

n N

N j j i
i j

N

j j N
j N

j j j j
j

W x

y

g y g y

= =

=

=

     λ λ γ µ = λ −µ +   
     

ϕ λ γ → λ λ

λ = − ≤ λ ≤ −
γ γ

∑ ∑

∑
∑

(22) 

We have obtaned the dual problem for (15). By its 
mathematical structure, this is the convex programming 
problem with respect to Lagrange multipliers 1( ,..., )Nλ λ  
associated with N  training objects, thus, its computatonal 
complexity is polynomial in N . Below in Section IV we 
consider the iterative Newton algorithm that solves the dual 
problem in the particular case of SVM pattern recognition.  

When the values of Lagrange multipliers 1
ˆ ˆ( ,..., )Nλ λ  are 

found, the independnt formulas (20) provide linear 
computational complexity of computing the elements of the 
direction vector 1ˆ ˆ( ,..., )Na a .  

It remains only to compute the estimate of the bias b  in the 
generalized linear model (4). It is clear that minimizaton of the 
Lagrangian (18) by 1( ,..., )Nz z  results in N  single conditions  

 1ˆ ˆˆ ( ) arg min ( , )
2j j j j

z
z q y z z

∈

 
λ = + λ γ 

,  (23) 

and equalities (14) give the formula  

 ,
1 1

1ˆ ˆ ˆˆ ( )
N n

j j i j i
j i

b z a x
N = =

 = λ − 
 

∑ ∑ .  (24) 

Before looking for an algorithm for the numerical solution 
of the dual problem, it is convenient to formulate the dual 
problem (22) in an equivalent form Each of n  summands of 
the first sum in the dual objective function 1( ,..., | , )NW λ λ γ µ  
(22) differs from zero only if ,1

N
j j ij
x

=
λ >µ∑ . Let 1( ,..., )Nλ λ  

stand for the subset of “active” features:  

{ } { }1 ,1
( ) ( ,..., ) : 1,...,N

N j j ij
i x n

=
= λ λ = λ >µ ⊆ =∑  λ .  (25) 

With respect to this notation, we have in (22)  

( ) 1

sup inf
1

1( | , ) ( , | ) min( ),
2

1 10, ( ) ( ),
2 2

N
T T

i i j j
i j

N

j j j j
j

W y

g y g y

∈ =

=

  
γ µ = + ϕ λ γ →   

 λ = − ≤ λ ≤ −
 γ γ

∑ ∑

∑


x x
λ

λ λ λ λ
(26) 

where 1. ,( )T N
i i N ix x= ∈ x  are vectors of the i th elements 

in all the training-set feature vectors.  

IV. ITERATIVE ALGORITHMS OF SOLVING THE DUAL PROBLEM  

A. The iterative descent algorithm with variable step length  
The function ( | ...)W λ  is differentiable at each point N∈λ . 
Moreover, it is even twice differentiable, and, so, Newton’s 
method is appropriate to find the solution of the dual problem. If 

kλ  is the current approximation to the solution, then a supposed-
ly better solution 1k+

λ  is defined by the completely differentiable 
convex programming problem  



1

1( )

sup inf
1

arg min ( | , )
1 arg min ( , | ) ,
2

1 10, ( ) ( ),
2 2

k

k k

N
T T

i i j j
jiN

j j j j
j

W

y

g y g y

+

=∈

=


= γ µ =

     + ϕ λ γ   
   

 λ = − ≤ λ ≤ −
 γ γ

∑ ∑

∑

 



x x
λ

λ λ

λ λ   (27) 

which differs from (27) only by the fixed summation do-
main ( )k λ .  

To avoid boring mathematical reasoning in the case of the 
convex link function of general kind ( , )q y z , we omit here 
the explanation of how to solve the convex programming 
problem (27). We will see in Section ??? that, in particular 
cases of regression (7) and pattern recognition (8)-(9), these 
will be quadratic programming problems easily solvable by 
traditional computational means.  

It is well seen that the approximation 1( ,..., )k k k
N= λ λλ  to 

the sought-for solution at step k  occurs in (27) only via the 
subset of active features (25), let it be denoted as  

( )k k=  λ , initially, the full feature set { }0 1,..., n= .  (28) 
Let the supposedly better solution of the dual problem 1k+

λ  
(27) at step k  be found. It may happen that the length of 
Newton’s step is too large, and it should be shortened. To 
check this necessity, it is enough to compare the values of 
the dual criterion (26) at points kλ  and 1k+

λ : 

 
1

1 1
If  ( | , ) ( | , ),
        the iteration is successful, and ;

k k

k k
W W+

+ +

γ µ ≤ γ µ
=





λ λ
λ λ

  (29) 

 
1

                               th
if  ( |

e step
, ) ( | ,

 is t
),
o be shorte e .n d

k k kW W+ γ µ > γ µλ λ   (30) 

To find the appropriate length of Newton’s step, we ap-
ply one-dimensional optimization of (27), namely, the gold-
en section algorithm:  

 
1 1

1 1 1 1
arg min ( ) (1 ) | , , 0 1,

(1 ) .

k k k

k k k k k
W+ +

+ + + +

 τ = τ + − τ γ µ ≤ τ ≤ 
= τ + − τ





λ λ
λ λ λ

  (31) 

Actually, the algorithm iteratively runs over the subsets of re-
gressors { }( ) 1,...,k k n= ⊂ =  λ  (25) without cycles because 

1( | , )kW + γ µ ≤λ ( | , )kW γ µλ  at each step. Thus, the stopping 
condition  
 1 1( , ) ( , )k k k k+ + = λ ξ λ ξ  (32) 
will be achieved after a finite number of steps.  

B. Numerical realization of an iteration for particular 
cases of the link function  
To complete description of the iterative algorithm, it re-

mains only to specify the ways of solving the constrained prob-
lem (27) at each step in the particular cases of regression and 
pattern recognition. The specificity is contained in function 

1( , | ) min ( , )
2zy q y z z∈

 
ϕ λ γ = − +λ γ 

  (16) and constraints  

sup inf
1 1( ) ( )
2 2j j jg y g y− ≤λ ≤−
γ γ

 (17).  

• Regression  

Theorem 1. In the particular case of regression (7), 
(16) and (17), we have  

sup ( )g y = ∞ , inf ( )g y = −∞ ,   21( , | )
2

y yϕ λ γ = γλ − λ ,  (33) 

the dual problem (27) at the k th step of the iteration process 
is quadratic  

1

( )

2 2

1 1( )

1arg min ( | , ) arg min
2

11 , 0,
2

k

k

k k T T
i i

i
N N

j j j j
j ji

W

y

+

∈

= =∈

   
= γ µ = −       µ + γλ − λ λ = 

   

∑

∑ ∑ ∑

 





x x
λ

λ

λ λ λ λ
(34) 

and its solution is defined by the system of linear equations 
( 1) ( 1)N N+ × +  

 1

1

,
0 0

k N

T
i i N N N

i
T
N

N

+
×

∈

+

  + γ       =     η      

∑ I 1 y

1




x x λ    

where η∈  is the idle Lagrange multiplier at the constraint 

1
0NT

N jj=
= λ =∑1 λ . The final bias estimate (24) has the form  

, ,
1 1

1ˆ ˆ
N n

j i j i
j i

b y a x
N α

= =

 = − 
 

∑ ∑  with respect to (20).   (35) 

• Pattern recognition SVM  

Theorem 2. In the particular case of SVM pattern 
recognition (8), we have  

sup inf

sup inf

1, 0, 1,
0, 1, 1,

g g y
g g y

= = =−
 = =− =

 10
2

y≤ λ ≤
γ

, ( , )y yϕ λ =− λ , (36) 

the solution to the dual problem at the k th step of the itera-
tion process (27) is that of quadratic programming problem  

1

( )

2

1 1( )

1arg min ( | , ) arg min
2

11 , 0, 0 , 1,..., .
2

k

k

k k T T
i i

i
N N

j j j j j
j ji

W

y y j N

+

∈

= =∈

   
= γ µ = −      µ − λ λ = ≤ λ ≤ = γ 

∑

∑ ∑ ∑

 





x x
λ

λ

λ λ λ λ
(37) 

The final bias estimate (24) has the form  

( )ˆ ˆ,1 : 0 (1 2 ) : (1 2 )

ˆ: 0 (1 2 )

ˆ ˆˆ
ˆ .

ˆ
j j j j

j j

n
i j j j i ji j y j y

j jj y

a y x
b

y

= < λ < γ λ = γ

< λ < γ

λ + λ
=−

λ

∑ ∑ ∑
∑

 (38) 

This is a standard quadratic programming problem [77] of 
polynomial computational complexity relative to N .  

V. ROUGH REGULARIZATION PATH ALONG THE SELECTIVITY AXIS  

A. Active interval of the selectivity parameter  
The selectivity parameter 0 ≤ µ < ∞  is the main hy-

perparameter of the dependence estimation problem in gen-
eral (11) and of its dual form in particular (22) or (25)-(26). 
If 0µ = , the criterions possess no selectivity property at all, 
and all the estimated components of the direction vector 
remain active (20).  

On the contrary, when the selectivity is large enough 
µ →∞ , all the direction vector components become zero. 
What is the maximal value of selectivity that completely 
suppresses all the features? We will denote it as 0µ because 
it retains 0 active features.  

Let us imagine the subset of active features in (26) to be 
empty:  

1

sup inf
1

( , | ) min( ),

1 10, ( ) ( ).
2 2

N

j j
j
N

j j j j
j

y

g y g y

=

=

 ϕ λ γ →

 λ = − ≤ λ ≤ −
 γ γ

∑

∑

λ
  (39) 

Remember that function ( , | )yϕ λ γ  (16) is convex in the 
respective range.  



Let 1( ,..., )N
∗ ∗λ λ  be solutions of the truncated problem 

(39), and 0µ  be defined as  

 ( )0 ,11,...,
max N

j j iji n
x∗

==
µ = λ∑ .  (40) 

Then, if 0µ = µ , we have 1 1
ˆ ˆ( ,..., ) ( ,..., )N N

∗ ∗λ λ = λ λ  in (22)  

 0 01, , 1 0

sup inf1

ˆ ˆ( ,..., ) arg min ( ,..., | , , , ),
0, (1 2 ) ( ) (1 2 ) ( ),
N N

N
j j j jj

W
g y g y

µ µ α

=

 λ λ = λ λ γ µ
 λ = − γ ≤ λ ≤ − γ∑

X y

 (41) 

and ˆ 0ia =  for all 1,...,i n=  in (20), i.e. we obtain the trivial 
empty model.  

Thus, the active interval of the selectivity parameter is 
00 ≤ µ ≤ µ .  

B. The idea of the regularization path and its rough 
implementation  
The number of active features will be growing from 0 to 

n  as µ  diminishing from 0µ  to 0 . This is just the exact 
idea of the full regularization path [8,9]. Theoretically, the 
number of bifurcation points, where the number of active 
features changes, will not be lesser than n , but in reality it 
will be much greater than n , because this process is far 
from being monotonic. As a result, such a procedure would 
be too time consuming in the case of large number of fea-
tures.  

We consider here a rough implementation of this idea. 
The experience shows that it is expedient to divide the inter-
val 8

0 0[10 0, ]− µ ≈ µ  into a number of m n≤  subintervals in 
logarithmic scale ( )8

010 l m
l

−µ = µ , 0,1,...,l m= :  
( )8 ( 1)8 0

0 1 0 0 010 0 10 ... 10 .m m
m m

− −− −
−µ = µ ≈ < µ = µ < < µ = µ  (42) 

The rough regularization path starts with 0l = , which 
corresponds to 0µ = µ  and the trivial dual problem (41) that 
yields the empty model ˆ 0ia =  for all 1,...,i n=  (20). Nev-
ertheless, the result of the iteration process 

0 01, ,
ˆ ˆ( ,..., )Nµ µλ λ  

should be stored.  

Each next value of the selectivity parameter lµ = µ  will 
almost coincide with the previous value 1l−µ = µ , and the 
iteration process (Section IV) started with the previous solu-
tion 

1 11, ,
ˆ ˆ( ,..., )

l lN− −µ µλ λ  will converge after only a few itera-
tions, in most cases, after one or two iterations. The number 
of non-zero components of the direction vector will gradual-
ly grow (20).  

Finally, at the last step 0mµ = µ ≈ , we will have the di-
rection vector with almost all active components.  

We will see in the next Section that the entire regulariza-
tion path will take approximately the same computation time 
as the iteration process for one single value of the selectivity 
parameter as (28)-(32) in Section IV.A.  

VI. EXPERIMENTAL STUDY OF THE COMPUTATIONAL 
COMPLEXITY OF DEPENDENCE ESTIMATION WITH GROWING 

NUMBER OF FEATURES  

The aim of the study is to experimentally measure the 
dependence of the processing time of the Newton's iterative 
algorithm (28)-(32) in Section IV, let it be denoted as T , 
from the dimension of feature vectors n  with emphasized 
attention to the number of iterations.  

A. SVM pattern recognition – Classification of evoked 
potentials in Electroencephalograms  
Electroencephalography is a method of testing the electri-

cal activity of the brain by jointly processing several electrical 
signals registered in parallel at several points on the surface of 
the skull. It was originally invented and is broadly used as a 
means to study mechanisms by which human behavior is 
generated, in particular, for brain diseases diagnosis. 

However, in the past decades, electroencephalography 
has become the basis of many brain-computer interfaces, 
which decode neural response to different stimuli into com-
mands that, for instance, operate external devices [10].  

The experiments we refer to in this paper [11,12] are con-
cerned with another purpose of analyzing responses of a mul-
ti-channel electroencephalogram (EEG) to outward stimuli. It 
is assumed that the person whose EEG is processed is an ex-
perienced mammologist able to reliably distinguish between 
X-ray mammograms of women with breast cancer and those 
of healthy women. These studies pursue the aim to essentially 
improve productivity of rare pronounced experts by way of, 
first, accelerating the screening of mammographic images up 
to ten pictures per second, and, second, immediately detecting 
the eventual potentials evoked in the expert’s EEG by a target 
(cancer) image among a crowd of non-target ones before the 
expert becomes aware of this fact.  

In our experiments, we analyzed 66-channel EEG sig-
nals registered in parallel at 66 points on the scalp of an 
expert. Initial EEG signals from each electrode are filtered 
with a cutoff frequency of 40 Hz, see [11,12] for details.  

The diagnostic session of a set of mammograms is orga-
nized as follows. The expert is shown a sequence of mam-
mograms at a speed of 10 Images per second, namely, 100 
ms per mammogram. The sequence was divided into groups, 
each of 11 images. There are two kinds of groups called 
target and non-target ones. A non-target group consists en-
tirely of healthy mammograms, whereas each target group 
contains exactly one cancer image at a random place sur-
rounded by healthy ones at both sides. Thus, the time dura-
tion of each group is 1100 ms. The EEG signal was original-
ly registered at a frequency of 1000 Hz, but we applied 11 
times thinning, so, one signal fragment corresponding to one 
group of mammograms, target or non-target ones, finally 
consists of 100 samples. Since 66 channels are registered, 

6600n =  is the entire dimension of the “EEG feature vec-
tor” ,1 ,( )T n

j j j nx x= ∈x   , which relates to the j -th image 
group and is built as concatenation of all the 66 channels.  

The classification of EEG potentials consists in detection 
whether the registered EEG signal n

j∈x   is a response to a 
target image 1jy =  or not target one 1jy = − . From the math-
ematical point of view, this is a two-class pattern recognition 
problem, which was formulated in [12] as that of selective 
SVM pattern recognition (8), (15):  
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    (43) 

The raining set is the objects/features table  
 ( )1

n n
Nx x , ,1 ,( )n n

j j j nx x= ∈x   ,  (44) 



with the number of features 6600n =  and number of ob-
jects 196N = , so that n N . The 6600 EEG features 
turned out to be tightly correlated – the eigenvalues of the 
inner product matrix quickly fall:  

1 2 3

20 1 50 1                          
16369.8, 1435.2, 1076.2,

134.0 0.01   , 0.0022 .32.
ζ = ζ = ζ =

ζ ζ ζ = < ζ<=
   

B. Chronometry of the learning process on data sets of 
growing dimensionality with fixed value of the selectivity 
parameter  
Let 1,...,i n=  be some natural numeration of features. 

We transformed the given basic training set (44) into a suc-
cession of partial training sets with growing dimensionality 
of the feature space  
 ( )1

m m
Nx x , ,1 ,( )m m

j j j mx x= ∈x   ,   1,...,m n= . (45) 

Let 0 < µ < ∞  be a fixed value of the selectivity parame-
ter that suppresses about three quarters of features, i.e., one 
fourth of them remains active. For the fixed selectivity, each 
of these partial training sets defines a succession of convex 
training criteria  

( )

2 2
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1 1

2 | |, | |( , | , ) , | |

               , min ,
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∑ ∑
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  (46) 

as functions of the direction vector of growing dimension 
1,...,m n= . On the other hand, each of the partial training 

sets defines the respective succession of dual criteria (22)  
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(47) 

which are functions of the same fixed number of Lagrange 
multipliers 1,..., Nλ λ .  

First, we applied a standard iterative convex program-
ming procedure available in Matlab to each of the full crite-
ria ( , | , )mJ b µ αa  (46), and registered the run time ( )fullT m . 
Then, we applied the iterative procedure (28)-(32) from Sec-
tion IV.A to each of dual criteria (47) and registered the run 
time ( )dualT m .  

The result is shown in Figure 1. As it is seen, the numer-
ical computational complexity of the initial regularized em-
pirical risk minimization problem (23) relative to the num-
ber of features remains polynomial and extremely high – the 
run time fillT  swiftly grows as m  increases. Numerical solv-
ing of this problem in the disjoint formulation (25)-(26) mul-
tiply reduces the computational complexity.  

 

Figure 1. SVM pattern recog-
nition – real-world data.  
 
Chronometry of the learning 
process with growing number 
of features 1,...,m n= . 
 

VII. CONCLUSIONS  
We have considered a class of generalized linear models 

of feature-based dependence estimation from empirical data, 
which covers, in particular, numerical regression and two- 
class SVM pattern recognition. Two additional assumptions, 
which are adequate to the overwhelming majority of practi-
cal applications, are that, first, the number of features n  far 
exceeds that of objects in the training set N  and, second, 
the features are tight interdependent, so that the effective 
dimension of the concentration ellipsoid of feature vectors is 
essentially smaller than the number of features.  

Under some quite lenient assumptions, the traditional 
formulation of the generalized linear dependence estimation 
problem results in the convex problem of regularized empir-
ical risk minimization. This problem inevitably has polyno-
mial computational complexity in the number of features, 
what is in crucial conflict with the assumption on the huge 
dimension of the feature vectors n N .  

Therefore, we proposed an alternative disjoint formulation 
of the generalized linear dependence estimation problem, 
which allows for its numerical solution in two consecutive 
stages. First, a convex dual minimization problem of N  vari-
ables is to be solved, which have the sense of Lagrange mul-
tipliers associated with the objects of the training set. Such a 
problem is of polynomial computational complexity relative 
to the assumingly modest size of the training set N . After 
that, it remains only to independently compute the estimates 
of the coefficients at the features in the generalized linear 
model of the sought-for dependence. It is clear that this pro-
cedure is not only of linear computational complexity in the 
number of features n , but also easily parallelizable.  
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