TensorNet: putting neural networks on a Tensor Train

A. Novikov
D. Podoprikhin
A. Osokin
D. Vetrov

March 6, 2015

Outline

(1) Neural networks

(2) Tensor train

(4) Experiments

Neural networks

First layer
Second layer

Motivation

Why do we care about memory?

- State-of-the-art deep networks doesn't fit to mobile devices;
- Up to 95% percent of parameters are in the fully connected layers;
- Shallow networks with huge fully connected layers can achieve almost the same accuracy, as ensemble of deep CNNs (Ba and Caruana 2014).

Matrix rank decomposition

Lets consider an $M \times N$ matrix \boldsymbol{W} with the rank equals r. We can use $(M+N) r$ memory instead of $M N$:

$$
\underbrace{\boldsymbol{W}}_{M \times N}=\underbrace{\boldsymbol{A}}_{M \times r r \times N} \underbrace{\boldsymbol{B}}
$$

Drawbacks of the rank decomposition

Problems:

(1) The low rank compression rate is limited (we want more);
(2) There is no practical way to train low rank shallow networks.

(1) Neural networks

(2) Tensor train

(3) TensorNet

(4) Experiments

Tensor Train summary

Tensor Train (TT) decomposition:

- Compact representation for vectors, matrices and tensors;
- Allows for efficient application of linear algebra operations.

Mapping example: vector

Build a mapping from the vector \boldsymbol{b} indices to tensor's elements: $x \leftrightarrow \boldsymbol{i}=\left(i_{1}, \ldots, i_{d}\right)$

Example (Matlab reshape):

$$
\begin{aligned}
\boldsymbol{B}(1,1,1)=\boldsymbol{b}(x(1,1,1)) & =\boldsymbol{b}(1) \\
\boldsymbol{B}(2,1,1)=\boldsymbol{b}(x(2,1,1)) & =\boldsymbol{b}(2) \\
\ldots & \\
\boldsymbol{B}(2,3,3)=\boldsymbol{b}(\times(2,3,3)) & =\boldsymbol{b}(18) .
\end{aligned}
$$

Matrices in the TT-format

Build a mapping from row / column indices of matrix $\boldsymbol{W}=[W(x, y)]$ to vectors \boldsymbol{i} and $\boldsymbol{j}: x \leftrightarrow \boldsymbol{i}=\left(i_{1}, \ldots, i_{d}\right)$ and $y \leftrightarrow \boldsymbol{j}=\left(j_{1}, \ldots, j_{d}\right)$.

TT-format for matrix \boldsymbol{W} :
$\boldsymbol{W}\left(i_{1}, \ldots, i_{d} ; j_{1}, \ldots, j_{d}\right)=\boldsymbol{W}(x(\boldsymbol{i}), y(\boldsymbol{j}))=\underbrace{\boldsymbol{G}_{1}\left[i_{1}, j_{1}\right]}_{1 \times r} \underbrace{\boldsymbol{G}_{2}\left[i_{2}, j_{2}\right]}_{r \times r} \ldots \underbrace{\boldsymbol{G}_{d}\left[i_{d}, j_{d}\right]}_{r \times 1}$
Notation \& terminology:

- $\boldsymbol{W} \in \mathbb{R}^{M \times N}, M=m^{d}, N=n^{d}$;
- $i_{k} \in\{1, \ldots, m\}, \quad j_{k} \in\{1, \ldots, n\}$;
- \boldsymbol{G}_{k} - TT-cores;
- r - TT-rank;

TT-format exists for any matrix \boldsymbol{W} and uses $O\left(d m n r^{2}\right)$ memory to store $O\left(m^{d} n^{d}\right)$ elements. Efficient only if TT-rank is small.

(1) Neural networks

(2) Tensor train
(3) TensorNet

Tensor Train layer: feedforward

Input is a $N \times 1$ vector \boldsymbol{x}, output is a $M \times 1$ vector \boldsymbol{y} :

$$
\boldsymbol{y}=\boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}
$$

\boldsymbol{W} is represented in the TT-format:

$$
\boldsymbol{y}\left(i_{1}, \ldots, i_{d}\right)=\sum_{j_{1}, \ldots, j_{d}} \boldsymbol{G}_{1}\left[i_{1}, j_{1}\right] \ldots \boldsymbol{G}_{d}\left[i_{d}, j_{d}\right] \boldsymbol{x}\left(j_{1}, \ldots, j_{d}\right)+\boldsymbol{b}(i)
$$

The parameters are the vector \boldsymbol{b} and the TT-cores $\left\{\boldsymbol{G}_{k}\right\}_{k=1}^{d}$

Backpropagation

$$
\begin{aligned}
L & =\frac{1}{2} \sum_{s=1}^{S}\left\|\boldsymbol{y}_{2}^{s}-\boldsymbol{y}^{s}\right\|_{2}^{2} \\
\frac{\partial L}{\partial \boldsymbol{y}_{2}} & =\sum_{s=1}^{S}\left(\boldsymbol{y}_{2}^{s}-\boldsymbol{y}^{s}\right) \\
\frac{\partial L}{\partial \boldsymbol{x}_{2}} & =\sum_{i} \frac{\partial L}{\partial \boldsymbol{y}_{2}(i)} \frac{\partial \boldsymbol{y}_{2}(i)}{\partial \boldsymbol{x}_{2}} \\
& =\frac{\partial f_{2}}{\partial \boldsymbol{x}_{2}} \frac{\partial \boldsymbol{L}}{\partial \boldsymbol{y}_{2}} \\
\frac{\partial L}{\partial \boldsymbol{\theta}_{2}} & =\frac{\partial f_{2}}{\partial \boldsymbol{\theta}_{2}} \frac{\partial L}{\partial \boldsymbol{y}_{2}}
\end{aligned}
$$

Backpropagation cont'd

From each layer we need only this:

$$
y_{1}=x_{2}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial \boldsymbol{x}_{k}}=g_{k}^{x}\left(\boldsymbol{x}_{k}, \frac{\partial L}{\partial \boldsymbol{y}_{k}}\right) \\
& \frac{\partial L}{\partial \boldsymbol{\theta}_{k}}=g_{k}^{\theta}\left(\boldsymbol{x}_{k}, \frac{\partial L}{\partial \boldsymbol{y}_{k}}\right)
\end{aligned}
$$

$$
f_{1}\left(x_{1}, \boldsymbol{\theta}_{1}\right) \quad f_{2}\left(x_{2}, \boldsymbol{\theta}_{2}\right)
$$

Tensor Train layer: backpropagation

Input: vectors $\frac{\partial L}{\partial \boldsymbol{y}} \in \mathbb{R}^{M}$ and $\boldsymbol{x} \in \mathbb{R}^{N}$.
Output: $\frac{\partial L}{\partial \boldsymbol{x}}, \frac{\partial L}{\partial b}$ and $\frac{\partial L}{\partial \boldsymbol{G}_{k}\left[i_{k}, j_{k}\right]}$.

Tensor Train layer: backpropagation

Input: vectors $\frac{\partial L}{\partial \boldsymbol{y}} \in \mathbb{R}^{M}$ and $\boldsymbol{x} \in \mathbb{R}^{N}$.
Output: $\frac{\partial L}{\partial \boldsymbol{x}}, \frac{\partial L}{\partial b}$ and $\frac{\partial L}{\partial \boldsymbol{G}_{k}\left[\dot{j}_{k}, j_{k}\right]}$.

$$
\begin{gathered}
\frac{\partial L}{\partial \boldsymbol{x}}=\boldsymbol{W}^{\top} \frac{\partial L}{\partial \boldsymbol{y}} \\
\frac{\partial L}{\partial \boldsymbol{b}}=\frac{\partial L}{\partial \boldsymbol{y}} . \\
\underbrace{\frac{\partial L}{\partial \boldsymbol{G}_{k}\left[i_{k}, j_{k}\right]}}_{r \times r}=\sum_{\boldsymbol{i}{ }^{\backslash k}} \frac{\partial L}{\partial \boldsymbol{y}(\boldsymbol{i})} \frac{\partial \boldsymbol{y}(\boldsymbol{i})}{\partial \boldsymbol{G}_{k}\left[i_{k}, j_{k}\right]}
\end{gathered}
$$

Tensor Train layer: Jacobian

We want to differentiate the following expression:

$$
\boldsymbol{y}(i)=\sum_{j} \boldsymbol{G}_{1}\left[i_{1}, j_{1}\right] \ldots \boldsymbol{G}_{k}\left[i_{k}, j_{k}\right] \ldots \boldsymbol{G}_{d}\left[i_{d}, j_{d}\right] \boldsymbol{x}(j)+\boldsymbol{b}(\boldsymbol{i})
$$

Tensor Train layer: Jacobian

We want to differentiate the following expression:

$$
\begin{aligned}
& \boldsymbol{y}(\boldsymbol{i})=\sum_{j} \boldsymbol{G}_{1}\left[i_{1}, j_{1}\right] \ldots \boldsymbol{G}_{k}\left[i_{k}, j_{k}\right] \ldots \boldsymbol{G}_{d}\left[i_{d}, j_{d}\right] \boldsymbol{x}(\boldsymbol{j})+\boldsymbol{b}(\boldsymbol{i}) .
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sum_{j^{k, d}} \boldsymbol{G}_{1}\left[i_{1}, j_{1}\right] \ldots \boldsymbol{G}_{k} \mid i_{k, 1 k}\right] \ldots \boldsymbol{G}_{d-1}\left[i_{d-1}, j_{d-1}\right] \\
& \underbrace{\sum_{j_{d}} G_{d}\left[i_{d}, j_{d}\right] x(j)}_{r \times m n^{d-1}}
\end{aligned}
$$

Intuition

$$
\boldsymbol{W}\left(i_{1}, i_{2}, i_{3} ; j_{1}, j_{2}, j_{3}\right)=\underbrace{G_{1}\left[i_{1}, j_{1}\right]}_{\in \mathbb{R}} \underbrace{G_{2}\left[i_{2}, j_{2}\right]}_{\in \mathbb{R}} \underbrace{G_{3}\left[i_{3}, j_{3}\right]}_{\in \mathbb{R}}
$$

$\boldsymbol{W} \in \mathbb{R}^{64 \times 64}$

Input \boldsymbol{x} and output \boldsymbol{y} are reshaped to $4 \times 4 \times 4$ tensor.

To vanish all dashed line weights, set $G_{3}\left[i_{3}=2, j_{3}=4\right]=0$.

Hidden units

Input image

(1) Neural networks

(2) Tensor train
(3) TensorNet
(4) Experiments

Mnist

Mnist dataset, two layered neural network. The input 28×28 image is reshaped to $2 \times 2 \times 7 \times 2 \times 2 \times 7$ tensor.

Network	Error	Neurons	I layer params	II layer
Baseline	2.34%	500	400000	5000
TensorNet (one TT-layer)	2.26%	46656	420	466560
TensorNet (two TT-layer)	2.07%	15625	3360	1380
TensorNet	2.6%	15625	350	156250
TensorNet (random order)	3.5%	15625	350	156250

Mnist cont'd

Mnist dataset, two layered neural network. The input 28×28 image is reshaped to $4 \times 7 \times 4 \times 7$ tensor.

Network	Error	Neurons	I layer params	II layer
Baseline	2.34%	500	400000	5000
TensorNet (one TT-layer)	1.68%	4096	1760	40960

Cifar

Deep convolutional neural network for CIFAR-10 (image classification). We compressed the last two fully connected layers $\times 11$ (the error increased from 23.25% to 23.74%).

References I

Ba, Jimmy and Rich Caruana (2014). "Do Deep Nets Really Need to be Deep?" In: Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani et al. Curran Associates, Inc., pp. 2654-2662.

