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Low Data Drug Discovery with One-Shot Learning
Motivation

› Deep neural networks in particular have been demonstrated to provide significant boosts in predictive power 

when inferring the properties and activities of small-molecule compounds.

› The applicability of these techniques has been limited by the requirement for large amounts of training data.



Motivation

› One-shot learning can be used to significantly lower the amounts of data required to make meaningful 

predictions in drug discovery applications.

› Iterative refinement long short-term memory, when combined with graph convolutional neural networks, 

significantly improves learning of meaningful distance metrics over small-molecules.



Problem

› The lead optimization step of drug discovery is fundamentally a low-data problem.

› To optimize the candidate molecule by finding analogue molecules with increased pharmaceutical activity 

and reduced risks to the patient.



Mathematical Formalism

We consider the situation in which one has multiple binary learning tasks.

Goal: to harness the information available in the training tasks to create strong classifiers for the test systems.

We have T tasks, each associated with data set
𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1

𝑚 , 𝑦𝑖 ∈ 0,1 .

The goal is to learn a function ℎ, parametrized upon choice of support 𝑆 that predicts the probability of any 
query 𝑥 being active in the same system.

ℎ𝑆 𝑥 : 𝜒 → 0,1

where 𝜒 is the chemical space of small-molecules.



Schematic of Network Architecture for one-shot learning in drug discovery
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One-shot learning
Let 𝑎 𝑥, 𝑥𝑖 denote some weighting function for query example 𝑥 and support set element 𝑥𝑖 with 

associated label 𝑦𝑖.

Then the label ℎ𝑆 𝑥 for query compound 𝑥 can be defined as ℎ𝑆 𝑥 = σ𝑖=1
𝑚 𝑎 𝑥, 𝑥𝑖 𝑦𝑖.

𝑎 𝑥, 𝑥𝑖 - non-negative function, σ𝑖=1
𝑚 𝑎 𝑥, 𝑥𝑖 = 1, is called attention mechanism.

𝑎 𝑥, 𝑥𝑖 =
𝑘 𝑓 𝑥 , 𝑔 𝑥𝑖

σ𝑗=1
𝑚 𝑘 𝑓 𝑥 , 𝑔 𝑥𝑗

𝑓: 𝜒 → ℝ𝑝

𝑔: 𝜒 → ℝ𝑝

𝑓 and 𝑔 are graph-convolutional networks, 𝑘 could be the cosine-distance.



One-shot learning
Feature map 𝑓(𝑥) is formed without any context about data available in support 𝑆.

Develop full context embeddings, in which embeddings 𝑓 𝑥 = 𝑓 𝑥|𝑆 and 𝑔 𝑥𝑖 = 𝑔 𝑥𝑖|𝑆 are computed 

using both 𝑥 and 𝑆. Full context embeddings allow the embeddings for 𝑥 and 𝑥𝑖 to affect one another.

𝑔 𝑥|𝑆 = BiLSTM 𝑔′ 𝑥1 | … |𝑔′ 𝑥𝑚

𝑓 𝑥|𝑆 = attLSTM 𝑓′ 𝑥 , 𝑔 𝑥𝑖|𝑆

But. attLSTM is order-independent, while the BiLSTM is order dependent. Furthermore, the treatment of 𝑓

and 𝑔 is nonsymmetric.



Iterative Refinement LSTMs
Idea: generate both query embedding 𝑓 and support 

embedding 𝑔.

Solution: iteratively evolve both embeddings

simultaneously.

• Define 𝑓 𝑥 = 𝑓′ 𝑥 , 𝑔 𝑆 = 𝑔′ 𝑆 .

• Iteratively update the embeddings 𝑓 and 𝑔 for 

𝐿 steps using an attention mechanism.
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Graph Convolutions
Use graph-convolutional neural networks to encode small-molecules in a form suitable for one-shot 

prediction.

New layers: pair of graph convolutional layer types, max-pooling and graph-gathering.

Three major neural-network layers that are used to featurizing the molecular graphs:

• the graph convolution ℎconv 𝐺 = ℎconv 𝑣1 , ℎconv 𝑣2 , … ;

• the graph pool ℎpool 𝐺 ;

• the graph gather ℎ𝑔𝑎𝑡ℎ𝑒𝑟 𝐺 .



From arXiv preprint arXiv:1611.03199



Model Training and Evaluation
Tasks represent the set of all learning tasks.

Split this into two disjoint sets, Train−Tasks and Test−Tasks. Let 𝑆 represent a support set, and let 𝐵 represent 

a batch of queries. 

ℒ = −𝐸𝑇∈𝑇𝑟𝑎𝑖𝑛−𝑇𝑎𝑠𝑘𝑠 𝐸𝑆~𝑇,𝐵~𝑇 ෍

𝑥,𝑦 ∈𝐵

log 𝑃𝜃 𝑦 𝑥, 𝑆

Task 𝑇 is randomly sampled, and then a support 𝑆 and a batch of queries 𝐵 are sampled from the task.

One gradient descent step minimizing ℒ, using ADAM is performed for each episode.



One-shot models training
• An assay from the training assays is randomly sampled.

• A support 𝑆 of size 𝑛pos + 𝑛neg and a batch of queries 𝐵 are sampled from the task.

• Models were trained for 2000 ∙ 𝑛train episodes.

• Each episode takes one gradient descent step minimizing ℒ, using ADAM.

• At test time, the accuracy of a one-shot model is evaluated separately on each testing assay.

• For a given test assay, a support of size 𝑛pos + 𝑛neg is sampled at random from data points for that assay. 

• The ROC-AUC score for the one-shot model is evaluated on the remainder of the data points for the test 
assay.

• This procedure is reported 20 times for each test assay, and the mean and standard deviations of 
computed ROC-AUC scores for each test assay are presented in the tables.



Singletask models training
• Random forests were trained on circular fingerprint representations of input molecules.

• For each test assay, supports of size 𝑛pos + 𝑛neg are sampled at random.

• The random forest model is trained on this sampled supported set and evaluated on the remainder of test 

assay.

• This procedure is repeated 20 times.

• Singletask graph convolutional networks are trained as the random forests are, but with graph 

convolutional features instead of circular fingerprint representations.



Experiments I

The Tox21 collection consists of 12 (9+3) nuclear receptor assays related to human toxicity.

All one-shot learning methods show strong boosts over the random-forest baseline, with the iterative 

refinement LSTM models showing a more robust boost in the presence of less data
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Experiments II

The SIDER data set contains information grouped the drug−SE pairs into 27 (21+6) system organ classes 
according to MedDRA classifications.

The Siamese and IterRefLSTM methods show strong boosts over the random-forest baseline, but the 

AttnLSTM has poor performance on this collection (comparable to the random forest). The iterative 

refinement LSTM models show a robust boost in the presence of less data. The graph convolutional baseline 

does poorly, with performance indistinguishable from random.
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Experiments III

The MUV data set collection contains 17 (12+5) assays designed to be challenging for standard virtual 

screening.

The positives examples in these data sets are selected to be structurally distinct from one another. As a result, 

this collection is a best-case scenario for baseline machine learning and a worst-case test for the low-data 

methods, since structural similarity cannot be effectively exploited to predict behavior of new active 

compounds. One-shot learning methods may have some difficulties generalizing to new molecular scaffolds.
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ML in drug discovery
• SVMs are used for binary property or activity predictions, for example, to distinguish between drugs and 
nondrugs or between compounds that have or do not have specific activity, synthetic accessibility, or aqueous 
solubility.

• The DT approach has been applied to problems such as designing combinatorial libraries, predicting ‘drug-
likeness’, predicting specific biological activities, and generating some specific compound profiling data.

• Naive Bayesian classifiers are frequently used in chemoinformatics both alongside or compared against 
other classifiers, generally for predicting biological rather than physicochemical properties.

• The k-NN algorithm is a simple and intuitive method to predict the class, property, or rank of a molecule 
based on nearest training examples in the feature space.

• ANNs have been applied in compound classification, QSAR studies, primary VS of compounds, 
identification of potential drug targets, and localization of structural and functional features of biopolymers.
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