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Introduction

Goals

When choosing the optimal complexity of the method for
constructing decision functions, an important tool is the
decomposition of the quality criterion into bias and variance.

Here we obtain an expression for the variance component for the
kNN method for the linear regression problem in the formulation
when the �explanatory� features are random variables.
In contrast to the well-known result obtained for non-random
�explanatory� variables, in the considered case, the variance may
increase with the growth of k.
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Introduction

Desired properties of decomposition

This is not always the case.

Bias ̸= approximation error

Variance ̸= stochastic error
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Bias-variance decomposition

Regression problem

Let X be the space of values of variables used for forecasting,
and Y be the set of values of the predicted variable.
All variables are random variables with some joint distribution
function.
Decision function is a mapping f : X → Y .
The decision function is constructed based on some training
sample of size N

SN =
(
(xω, yω), ω = 1, N

)
.

For the decision function as a whole, the quality criterion will be
MSE, i.e.

R(f(·)) = Ex,y(y − f(x))2.

By this criterion, the optimal solution will be a regression
function, i.e. a conditional mathematical expectation.
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Bias-variance decomposition

Classical statement

In the classical statement of regression problem, the values of X
are not random. Only the target variable is random, which is
represented as

y(x) = f̂(x) + δ, (1)

where f̂(x) is some unknown function, and δ is a random
variable with zero mean and variance σ2.
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Bias-variance decomposition

Bias-Variance decomposition

For arbitrary independent random variables u and v (if the
corresponding moments exist), the identity holds

E(u− v)2 = Du+ (Eu− Ev)2 + Dv,

where D denotes variance, i.e. Du ≡ Eu2 − (Eu)2.
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Bias-variance decomposition

Bias-Variance decomposition

Let's �x a point x of the feature space and substitute u = y |x,
v = f(x). Since f(x) is constructed on a random sample, v is a
random variable. Then we get

ESN ,y |x(y − f(x))2 =

Dy |xy + (Ey |xy − ESN
f(x))2 + DSN

f(x). (2)

The notation ESN ,y |x means that the expectation is taken over
all samples of size N and over the conditional distribution on
the target variable y at the point x. So, a subscript at operators
E or D indicates the domain for averaging.
We obtain that in this formulation is the decomposition of MSE
into �noise�, bias and variance.
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Bias-variance decomposition

Decomposition for kNN

A number of sources (e.g. Hastie... The Elements of Statistical
Learning) provide the following decomposition formula for the
kNN method

ESN ,y |x(y − f(x))2 =

(
f(x)− 1

k

k∑
i=1

f̂(ξi(x))

)2

+
σ2

k
+ σ2, (3)

where ξi(x) is the coordinates of the i�th �neighbor� of a point x.
The second term in this decomposition is proposed to be
interpreted as a variance.
The variance component in 3 decreases monotonically with the
growth of k, i.e. it increases with increasing complexity, since
the complexity characteristic for kNN is opposite to k and can
be, for example, 1

k .
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Bias-variance decomposition

Random features case

Consider now �explanatory� features to be random.
Let X = [0, 1]n and y = x1 + δ, where x = (x1, ..., xn) ∈ X.

We consider the model f̂(x) = x1 as a linear regression model
without loss of generality because any linear model may be
converted to it via proper transformation of features.

Suppose that xj are independent random variables, xj ∼ U(0, 1).
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Bias-variance decomposition

kNN regressions for di�erent samples

The bias is close to 0.
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Bias-variance decomposition

Decomposition for the random features case

Proposition. For the inner points of X, there is:

ESN ,y |x(y − f(x))2 = D

[
1

k

k∑
i=1

ξi(x)

]
+

σ2

k
+ σ2, (4)

where

D

[
1

k

k∑
i=1

ξi(x)

]
≈ (N∗)−

2
n

2n2k2

k−1∑
m=0

k −m

m!
Γ

(
m+

2

n

)
(5)

and

N∗ = NV0, V0 =
π

n
2

2nΓ
(
1 + n

2

) .
The decomposition is asymptotically exact as N → ∞.
Here V0 is the volume of n-dimensional ball of diameter 1.
The �rst two terms in 4 are the variance, the last one is noise.
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Bias-variance decomposition

Special case

For n = 1 the formula 5 get

D

[
1

k

k∑
i=1

ξi(x)

]
=

(k + 1)(k + 2)

12N2k
.

In contrast to 1, the resulting decomposition has a
monotonically increasing (close to linear growth) term in the
variance component.
This term provides the possibility of decreasing variance with
increasing complexity.
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Bias-variance decomposition

Properties

For n = 2 the formula 5 get simple

D

[
1

k

k∑
i=1

ξi(x)

]
=

k + 1

4πNk
.

We can see that the variance for kNN demonstrates di�erent
behavior depending on dimensionality.

By n = 1 the variance increases as k increases.

By n = 2 the variance tends to a positive constant
as k → ∞.

By n > 2 the variance tends to zero.



Âûðàæåíèÿ äëÿ ðàçëîæåíèÿ îøèáêè ìåòîäà kNN

Îáîñíîâàíèå ìåòîäîâ ÷åðåç ðàçëîæåíèå

¾Îáîñíîâàíèå¿ ýôôåêòèâíîñòè ñëó÷àéíîãî ëåñà

Ñðàâíèâàåì ïî òî÷íîñòè òðè âàðèàíòà ðåøàþùåé ôóíêöèè.

Îäíî ¾îáû÷íîå¿ äåðåâî.

Îäíî ¾ïëîõîå¿ äåðåâî (ïîñòðîåíî ïî èñêàæ¼ííîé
âûáîðêå).

Àíñàìáëü ¾ïëîõèõ¿ äåðåâüåâ (ñëó÷àéíûé ëåñ).

Ëåãêî äîêàçàòü, ÷òî 3 ëó÷øå ÷åì 2, íî íèîòêóäà íå ñëåäóåò,
÷òî 3 ëó÷øå 1, ïîñêîëüêó ñìåùåíèå è ðàçáðîñ â 2 áîëüøå
÷åì â 1.
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Îáîñíîâàíèå ìåòîäîâ ÷åðåç ðàçëîæåíèå

¾Îáîñíîâàíèå¿ ýôôåêòèâíîñòè áóñòèíãà

Ñðàâíèâàåì ïî òî÷íîñòè òðè âàðèàíòà ðåøàþùåé ôóíêöèè.

Îäíî ¾îáû÷íîå¿ äåðåâî.

Îäíî äåðåâî, êîòîðîå âîîáùå íå ãîäèòñÿ â êà÷åñòâå
ñàìîñòîÿòåëüíîãî ðåøåíèÿ (íå ïðîãíîçèðóåò öåëåâóþ
ïåðåìåííóþ, à ¾èñïðàâëÿåò îøèáêè¿ ïðåäûäóùèõ).

Àíñàìáëü ¾íåñàìîñòîÿòåëüíûõ¿ äåðåâüåâ (boosting).

Ëåãêî ïîâåðèòü, ÷òî 3 ëó÷øå ÷åì 2, íî íèîòêóäà íå ñëåäóåò,
÷òî 3 ëó÷øå 1, ïîñêîëüêó ñìåùåíèå â 2 áîëüøå ÷åì â 1 è
äåðåâüÿ çàâèñèìû.
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Îáîñíîâàíèå ìåòîäîâ ÷åðåç ðàçëîæåíèå

¾Îáîñíîâàíèå¿ ýôôåêòèâíîñòè êîìïîçèöèé

Òåêóùåå ñîñòîÿíèå âîïðîñà.

Êîìïîçèöèè êàê ïðàâèëî äåéñòâèòåëüíî ýôôåêòèâíåå
îòäåëüíûõ ìåòîäîâ.

Ðàçëîæåíèå íà ñìåùåíèå è ðàçáðîñ âåðîÿòíî îòðàæàåò
íåêîòîðóþ èíòóèöèþ, ñòîÿùóþ çà ýòèì ôàêòîì.

Îäíàêî, äàííàÿ êîíñòðóêöèÿ íå ïîçâîëÿåò äîêàçàòü, ÷òî
êîìïîçèöèè è äîëæíû áûòü ýôôåêòèâíåå.
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Decomposition onto adequacy and stability

Alternative decomposition

Such undesired properties of bias-variance decomposition
encourage to search alternatives.
As such alternative might be considered another decomposition
of the error: into a measure of adequacy and a measure of
stability, that was proposed by G.S. Lbov and N.G. Startseva
(Complexity of Distributions in the Classi�cation Problem.
Doklady RAS, 1994, vol. 338, no. 5, pp. 592�594).

The idea of the approach is to decompose the error into the
approximation error and the statistical error.
The components of this decomposition are obviously monotonic.
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Decomposition onto adequacy and stability

Adequacy and stability measures

The idea behind the approach is to decompose the error into an
approximation error and a statistical error.

The more complex class of decision functions, the more
accurately it can potentially approximate optimal solution, but
the actual accuracy may decrease due to statistical error when
solution is built on sample.

The basic concept of this decomposition is the asymptotic
average risk or the asymptotic value of the average quality

F∞(Q) = lim
N→∞

FN (Q). (6)



Âûðàæåíèÿ äëÿ ðàçëîæåíèÿ îøèáêè ìåòîäà kNN

Decomposition onto adequacy and stability

Adequacy and stability measures

The measure of adequacy is the di�erence between the
asymptotic mean risk and the Bayesian risk. This measure
shows how good a solution the method could give in the case of
an unlimited sample (or when constructing solutions on the
distributions themselves).
The measure of statistical stability is the di�erence between the
average risk and the asymptotic one.
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Decomposition onto adequacy and stability

Approximational and stochastic errors

Note that it would be more correct to call the introduced
components a measure of inadequacy (approximational error)
and a measure of instability (statistical error), since they
characterize error rather than accuracy. To avoid terminological
inconveniences, we will also use the terms approximation error
and statistical estimation error.
The Bayesian level of error (risk) is exactly what in the
equation 2 called noise.
We see that the decompositions are similar: both have three
components, one of which (noise) coincides.
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Learning on distributions

Learning on distributions

To estimate the measure of adequacy we need to learn model on
distributions instead of samples.
All methods (that I know) can use distributions instead of
sample.
For SVM this is not obvious, but SVM is equivalent to some
unconditional optimization.
Now we show some examples for the gradient boosting been
learned on distribution, when the probabilities were expressed
by sample weights.
Usually, gradient boosting can overtrain in�nitely, but in the
cases below it converges.
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Learning on distributions

Regular weighted �sample� as a distribution

P(y = 1 |x ∈ E) = P(y = 0 |x /∈ E) = 0.9, E is the ellipse,
xj ∼ U(−1, 1).
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Learning on distributions

Gradient boosting solution

max_depth = 2, n_estimators is 15 and 1000 correspondently.
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Learning on distributions

Gradient boosting on stumps

max_depth = 1, n_estimators is 15 and 1000 correspondently.
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Learning on distributions
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Conclusions

Conclusions

We obtain an expression for the variance component for the
kNN method for the linear regression problem in the
formulation when the �explanatory� features are random
variables.

Comparison of two decompositions was carried out: for bias
and variance and for measure of adequacy and stability.

It is shown that with increasing complexity, the bias can
increase, and the variance can decrease, while the
decomposition into the measure of adequacy and stability
always has a �canonical� form.

Non-trivial observations can be made when training models
on distributions.
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