

Machine learning for better query planning

Oleg Ivanov

8th of April, 2016

www.postgrespro.ru

- 1. Query planning
- 2. Machine learning for better query planning
- 3. Further research

SELECT * FROM users WHERE age > 25;

Users

Messages

id	name	age	city
0	Ivan	25	MSC
1	Petr	39	SPB
3	Sidor	14	MSC
4	Pavel	47	LON
5	Petr	15	MSC

	U	
sender_id	text	reciever_id
3	Hi!	5
5	Who r u?	3
3	I'm Sidor! :)	5
3	And you?	5

Result

id	name	age	city
1	Petr	39	SPB
4	Pavel	47	LON

SELECT * FROM users, messages WHERE age < 15 AND users.id = messages.sender_id;

Users

Messages

id	name	age	city	sender_id	text	reciever_id	
0	Ivan	25	MSC	3	Hi!	5	
1	Petr	39	SPB	5	Who r u?	3	
3	Sidor	14	MSC	3	I'm Sidor! :)	5	
4	Pavel	47	LON	3	And you?	5	
5	Petr	15	MSC	Result			
id	name	age	city	sender_id	text	reciever	_id
3	Sidor	14	MSC	3	Hi!	5	
3	Sidor	14	MSC	3	I'm Sidor! :)	5	
3	Sidor	14	MSC	3	And you?	5	

Query execution plan

Query execution plan

Motivation

Relational DBMS

First relational DBMS: IBM System R (1974)

Query optimizer:

- Rule-based
- Cost-based (System R)

Cost-based optimizer: Cost estimation Optimization over all possible plans

How to choose execution plan?

Dynamic programming on subsets: $f(X) = aggregate(g(f(x), f(X \setminus x), x, X \setminus x))$

System R cost-based model:

$$cost(X) = min_{x \subset X}(join(cost(x), cost(X \setminus x), x, X \setminus x))$$

{messages} Cost: 3 {pictures} Cost: 2

System R cost-based model: $cost(X) = \min_{x \in X} (join(cost(x), cost(X \setminus x), x, X \setminus x))$

Memory complexity: $O(2^N)$

Genetic algorithm

How to choose execution plan?

Cardinality estimation

$C_o = n_s c_s + n_r c_r + n_t c_t + n_i c_i + n_o c_o$

$C = \sum_{O \in Tree} C_O$	C _s	seq_page_cost	1.0
	C _r	random_page_cost	4.0
	C _t	cpu_Tuple_cost	0.01
	C _i	cpu_Index_tuple_cost	0.005
	C _o	cpu_Operator_cost	0.0025

In-memory sort: $n_o = 2 \cdot 1.39 \cdot N \cdot \log_2 N + N$

Dataset: The TPC Benchmark™H (TPC-H) http://www.tpc.org/tpch/

Cardinality estimation

Dataset: The TPC Benchmark™H (TPC-H) http://www.tpc.org/tpch/

Dataset: The TPC Benchmark™H (TPC-H) http://www.tpc.org/tpch/

How good are query optimizers, really? V. Leis, A. Gubichev, A. Mirchev et al.

Cardinality estimation

SELECT * FROM users WHERE age < 25;

Joint selectivity

SELECT * FROM users WHERE age < 25 AND city = 'Moscow';

We have only marginal selectivities The conditions are assumed to be independent

 $Selectivity_{age,city} = Selectivity_{age} \cdot Selectivity_{city}$

Excluding Selectivity_{25<age ANDage<57} = Selectivity_{25<age<57}

Selectivity overestimation

SELECT * FROM users WHERE position = 'cleaner' AND salary > 50000;

Selectivity
$$_{cleaner} \simeq 0.2$$

Selectivity $_{salary} \simeq 0.3$

Selectivity $_{salary, cleaner}$ - Selectivity $_{salary}$ · Selectivity $_{cleaner}$ Wrong!

Selectivity_{salary,cleaner} $\simeq 0$ **Correct**

Contradiction of conditions is not the common case

Selectivity underestimation

SELECT * FROM users WHERE position = 'cleaner' AND salary < 50000;

Selectivity
$$_{cleaner} \simeq 0.2$$

Selectivity $_{salary} \simeq 0.3$

Selectivity $_{salary, cleaner}$ - Selectivity ... · Selectivity $_{cleaner}$ Wrong!

 $Selectivity_{salary, cleaner} \simeq Selectivity_{cleaner}$ **Correct**

Common case is when a condition makes more precise previous ones

- Predicting multiple metrics for queries: Better decisions enabled by machine learning / A. Ganapathi, H. Kuno, U. Dayal et al.
- Learning-based query performance modeling and prediction / M. Akdere, U. Cetintemel, M. Riondato et al.
- A machine learning approach to sparql query performance prediction / Hasan R., Gandon F.
- Robust estimation of resource consumption for sql queries using statistical techniques / J. Li, A. C. K onig, V. Narasayya, S. Chaudhuri
- Malik T., Burns R. C., Chawla N. V. A black-box approach to query cardinality estimation.

And many other ways of feature construction

That was very interesting, but

$\{ \underset{x \in all_plans(query)}{\operatorname{argmin}} J(x) | query \in Queries \}$

- Towards predicting query execution time for concurrent and dynamic database workloads / W. Wu, Y. Chi, H. Hac ıg um u s, J. F. Naughton
- Predicting query execution time: Are optimizer cost models really unusable? / W. Wu, Y. Chi, S. Zhu et al.
- Uncertainty aware query execution time prediction / W. Wu, X. Wu, H. Hacig üm üs, J. F. Naughton
- Sampling-based query re-optimization / Wu W., Naughton J. F., Singh H.

- Learning-based query performance modeling and prediction / M. Akdere, U. Cetintemel, M. Riondato et al.
- Predicting query execution time: Are optimizer cost models really unusable? / W. Wu, Y. Chi, S. Zhu et al.

But

• How good are query optimizers, really? / V. Leis, A. Gubichev, A. Mirchev et al.

Multidimensional histograms

- Selectivity estimation without the attribute value independence assumption. / Poosala V., 1997
- Selectivity estimation in extensible databases a neural network approach / Lakshmi M. S., Zhou S., 1998
- Selectivity estimation using probabilistic models / Getoor L., Taskar B., Koller D., 2001
- A bayesian approach to estimating the selectivity of conjunctive predicates. / Heimel M., Markl V., Murthy K., 2009
- Cardinality estimation using neural networks / H. Liu, M. Xu, Z. Yu et al., 2015

1. Define similarity between two objects:

dist
$$(\vec{x}_1, \vec{x}_2) = \dots$$
 sim $(\vec{x}_1, \vec{x}_2) = \frac{1}{1 + \text{dist}(\vec{x}_1, \vec{x}_2)}$

2. Define K.

3. Find the K nearest objects and compute their weights: $w_i = \frac{\sin(\vec{x_{new}}, \vec{x_{(i)}})}{\sin(\vec{x_{new}}, \vec{x_{(1)}}) + ... + \sin(\vec{x_{new}}, \vec{x_{(K)}})}$

4. Return weighted combination of their hidden variables: $y_{new} = w_1 y_{(1)} + ... + w_K y_{(K)}$

Ridge regression

1. Model:
$$y_i \simeq w_1 \cdot x_{i,1} + ... + w_D \cdot x_{i,D} + b = f(\vec{x}_i, \vec{w}, b)$$

2. Fitting parameters: $L(\vec{w},b) = \sum_{i=1}^{l} (f(\vec{x}_i,\vec{w},b) - y_i)^2 + \lambda \sum_{i=1}^{D} w_i^2 \rightarrow \min_{\vec{w},b}$

3. Make predictions:

$$y_{new} \simeq f(\vec{x_{new}}, \vec{w}^{min}, b^{min}) = w_1^{min} \cdot x_{new,1} + \dots + w_D^{min} \cdot x_{new,D} + b^{min}$$

Selectivity	users.age > const	users.city = const	messages.sender_id = users.id
0.25	0.25	-	_
0.23	0.25	0.6	_
0.3	0.5	0.6	-
0.0005	-	0.5	0.001
???	0.5	0.5	-

LogSelectivity	users.age > const	users.city = const	messages.sender_id = users.id
-1.386	-1.386	0	0
-1.470	-1.386	-0.511	0
-1.204	-0.693	-0.511	0
-7.600	0	-0.693	-6.908
	••••		
???	-0.693	-0.693	0

L

$$Joint_selectivity = \prod_{c \in conditions} selectivity_{c}$$
$$\log Joint_selectivity = \sum_{c \in conditions} \log selectivity_{c}$$

A special case of ridge regression:

$$\log Joint _ selectivity = \sum_{c \in conditions} w_c \log selectivity_c$$

Feedback

Feedback

Does it converge?

What is convergence speed?

What guarantees on obtained plans or regressor do we have?

Theorem 1

If regressor and its learning procedure fulfils follows:

- For each sample there is only one true selectivity
- Regressor predicts true selectivities for all samples from training set
- Duplicating a sample in training set doesn't change regressor

Then for a fixed number of queries and fixed data

- learning algorithm will converge (regressor and best plans are not changing) in finite number of steps
- predictions are correct for all conditions sets from executed plans

Theorem 1

Does it converge? Yes, in finite number of steps

What is convergence speed? Don't know

What guarantees on obtained plans or regressor do we have?

Predictions are correct for all executed plans

Theorem 2 with exploration by random noise

If regressor and its learning procedure fulfils follows:

- Theorem 1 conditions
- Random independent noise added to regressor's predictions
- Probability density for each sample and each selectivity $s \in [0, 1]$ is greater than some positive ε .
- Each possible plan has nonzero probability to be choosen.

Then for a fixed number of queries and fixed data

- learning algorithm will converge (regressor and best plans are not changing) in finite number of steps with probability 1
- predictions are correct for all conditions set from all possible plans

Theorem 2 with exploration by random noise

Does it converge? Yes, in finite number of steps with probability 1

What is convergence speed? Don't know

What guarantees on obtained plans or regressor do we have?

Predictions are correct for all executed plans Choosed plans are globally the best plans available

Feedback

The tried techniques

- Ridge regression
 - stochastic gradient descent
- Composition of ridge regressions
 - stochastic gradient descent
 - the exact solution of linear algebraic equation system by Gauss
- K Nearest Neighbours
 - K = 1

Dataset: The TPC Benchmark™H (TPC-H) http://www.tpc.org/tpch/

$$\sqrt{\frac{1}{N}\sum_{i=1}^{N} (\log S_i - \log \hat{S}_i)^2}$$

N — number of nodes in plan \hat{S}_i — predicted selectivity of i-th node S_i — true selectivity of i-th node

Dataset: The TPC Benchmark™H (TPC-H) http://www.tpc.org/tpch/

Mean quality: 0.87 http://www.tpc.org Mean quality after 100 steps: 0.87

Dataset: The TPC Benchmark™H (TPC-H) http://www.tpc.org/tpch/

Mean quality: 0.87 http://www.tpc.org Mean quality after 100 steps: 0.82

Dataset: The TPC Benchmark™H (TPC-H) http://www.tpc.org/tpch/

Mean quality: 0.72 http://www.tpc.or Mean quality after 100 steps: 0.67

Dataset: The TPC Benchmark™H (TPC-H) http://www.tpc.org/tpch/

Mean quality: 1.63 http://www.tpc.or Mean quality after 100 steps: 1.61

Dataset: The TPC Benchmark™H (TPC-H) http://www.tpc.org/tpch/

Mean quality: 0.23 http://www.tpc.org Mean quality after 100 steps: 0.06

Obtained results: selectivity

Dataset: The TPC Benchmark™H (TPC-H) http://www.tpc.org/tpch/

Obtained results: performance

Obtained results: issues

Marginal selectivities may be not precise enough

•	lauses.c ×	clausesel.c ×	costsize.c ×	execMain.c ×	instrument.c ×	instrument.h ×	execProcnode.c ×	pathnode.c ×	relnode.c ×	plancat.c ×	plannodes.h ×	copyfuncs.c ×	relation.h ×
68 69 69 69 69 69 69 69 69 69	<pre>9 9 /* * DistinctExpr has the same representation as OpExpr, but the * contained operator is "=" not "<>", so we must negate the result. * This estimation method doesn't give the right behavior for nulls, * but it's better than doing nothing. */ if (IsA(clause, DistinctExpr)) s1 = 1.0 - s1; 8 } 0 </pre>												
70													
70 70 70 70 70	L 🖃 2 3 4 5 -	/* * This i * HACK T * SELECT */	s not an op 0 GET V4 OU IVITIES THE	erator, so w IT THE DOOR. MSELVES.	e guess at the FUNCS SHOULD JMH 7/9/	e selectivity. BE ABLE TO HA '92	THIS IS A VE						
70 70	5	s1 = (Sel	ectivity) 0	.3333333;									
70 70	B ⊟#ifd	else if (IsA(clause, SubPlan)											
71 71	, 1	ISA(clause, Alt	ernativeSubP	lan))								
71 71	2 自 3 】	⊨ /* * Just for the moment! EIX MEL - vadim 02/04/98											
71	4	*/											
71	5 -	s1 = (Selectivity) 0.5; - }											
71	7 -#end	-#endif											
71	e d	{	ctause, sca	псагитауорся	pi))								
72 72	9	/* Use no s1 = scal	de specific ararraysel(selectivity	calculation f	unction */							
72 72 72	2 3	51 - Stat	ararrayset	(ScalarArray treat_as_joi	OpExpr *) clau n_clause(claus varRe	se, se, rinfo, lid. siinfo).							
72	5			varRelid,		, -,,							

Obtained results: issues

SELECT * FROM users, messages WHERE users.id = messages.sender_id AND users.age % 10 > 5;

We have to predict:

Sample selection

Realtime adaptation

Space of plans exploration

Space of plans exploration

Obtained results: performance acceleration

Questions?

www.postgrespro.ru