
www.postgrespro.ru

Machine learning
for better query planning

Oleg Ivanov

8th of April, 2016

Outline

1. Query planning

2. Machine learning for better query planning

3. Further research

SQL

SELECT *
FROM users
WHERE age > 25;

id name age city

0 Ivan 25 MSC

1 Petr 39 SPB

3 Sidor 14 MSC

4 Pavel 47 LON

5 Petr 15 MSC

Users
sender_id text reciever_id

3 Hi! 5

5 Who r u? 3

3 I'm Sidor! :) 5

3 And you? 5

Messages

id name age city

1 Petr 39 SPB

4 Pavel 47 LON

Result

SQL

SELECT *
FROM users, messages
WHERE age < 15 AND users.id = messages.sender_id;

id name age city

0 Ivan 25 MSC

1 Petr 39 SPB

3 Sidor 14 MSC

4 Pavel 47 LON

5 Petr 15 MSC

Users
sender_id text reciever_id

3 Hi! 5

5 Who r u? 3

3 I'm Sidor! :) 5

3 And you? 5

Messages

Result
id name age city sender_id text reciever_id

3 Sidor 14 MSC 3 Hi! 5

3 Sidor 14 MSC 3 I'm Sidor! :) 5

3 Sidor 14 MSC 3 And you? 5

Query execution plan

SeqScan

users u1

SeqScan

messages m

HashJoin

SeqScan

users u2

HashJoin

SELECT *
FROM users AS u1, messages AS m, users AS u2
WHERE u1.id = m.sender_id AND m.receiver_id = u2.id;

Query execution plan

SeqScan

users u1

IndexScan

messages m

MergeJoin

IndexScan

users u2

NestedLoopJoin

SELECT *
FROM users AS u1, messages AS m, users AS u2
WHERE u1.id = m.sender_id AND m.receiver_id = u2.id;

Motivation

IndexScan

users u1

SeqScan

messages m

NestedLoopJoin

IndexScan

users u2

NestedLoopJoin

SELECT *
FROM users AS u1, messages AS m, users AS u2
WHERE u1.id = m.sender_id AND m.receiver_id = u2.id;

Query optimizer

Relational DBMS

First relational DBMS:
IBM System R (1974)

Query optimizer:
● Rule-based
● Cost-based (System R)

Cost-based optimizer:
Cost estimation
Optimization over all possible plans

How to choose execution plan?

Dynamic programming

or

Genetic algorithm

Optimization method

Plan's cost
estimation

SeqScan

users

HashJoin

HashJoin

SeqScan

messages

SeqScan

pictures

439429 units

MergeJoin

SeqScan

messages

SeqScan

pictures

304528 units

Dynamic programming

Dynamic programming on subsets:

System R cost-based model:

f (X)=aggregate
x⊂X

(g(f (x) , f (X ∖ x) , x , X ∖ x))

cost (X)=min
x⊂X

(join(cost (x) ,cost (X ∖ x) , x , X ∖ x))

Dynamic programming

{users}
Cost: 1

{messages}
Cost: 3

{pictures}
Cost: 2

Dynamic programming

{users}
Cost: 1

{messages}
Cost: 3

{pictures}
Cost: 2

{messages, pictures}
Cost: 7

{users, messages}
Cost: 4

{users, pictures}
Cost: 3

Dynamic programming

{users}
Cost: 1

{messages}
Cost: 3

{pictures}
Cost: 2

{messages, pictures}
Cost: 7

{users, messages}
Cost: 4

{users, pictures}
Cost: 3

{users, messages, pictures}
Cost: 8

Dynamic programming

System R cost-based model:

Memory complexity:

Time complexity:

cost (X)=min
x⊂X

(join(cost (x) ,cost (X ∖ x) , x , X ∖ x))

O(2N)

O(3N)

join

cost (

cost (cost (

)

))

Genetic algorithm

How to choose execution plan?

Dynamic programming

or

Genetic algorithm

Optimization method

Plan's cost
estimation

SeqScan

users

HashJoin

HashJoin

SeqScan

messages

SeqScan

pictures

439429 units

MergeJoin

SeqScan

messages

SeqScan

pictures

304528 units

Cost estimation

SeqScan

users u1

SeqScan

messages m

HashJoin

SeqScan

users u2

HashJoin

SELECT *
FROM users AS u1, messages AS m, users AS u2
WHERE u1.id = m.sender_id AND m.receiver_id = u2.id;

Cardinality estimation

SeqScan

users u1

SeqScan

messages m

HashJoin

SeqScan

users u2

HashJoin

SELECT *
FROM users AS u1, messages AS m, users AS u2
WHERE u1.id = m.sender_id AND m.receiver_id = u2.id;

10000000

10000 1000010000000

10000000

Cost estimation

SeqScan

users u1

SeqScan

messages m

HashJoin

SeqScan

users u2

HashJoin

SELECT *
FROM users AS u1, messages AS m, users AS u2
WHERE u1.id = m.sender_id AND m.receiver_id = u2.id;

10000000

10000 1000010000000

10000000

145 145163784

301607

439429

Cost estimation

c
s seq_page_cost 1.0

c
r random_page_cost 4.0

c
t cpu_Tuple_cost 0.01

c
i cpu_Index_tuple_cost 0.005

c
o cpu_Operator_cost 0.0025

C= ∑
O∈Tree

CO

CO=nsc s+nr cr+nt ct+nic i+no co

no=2⋅1.39⋅N⋅log2N+N
In-memory sort:

Cost estimation

Query conditions

Information
about stored data

Environment state

Cardinality
estimation Cost estimation

Cost estimation

Dataset:
The TPC Benchmark™H (TPC-H)

http://www.tpc.org/tpch/

Cardinality estimation

Dataset:
The TPC Benchmark™H (TPC-H)

http://www.tpc.org/tpch/

Cost estimation

Dataset:
The TPC Benchmark™H (TPC-H)

http://www.tpc.org/tpch/

Cost estimation

How good are query optimizers, really?

V. Leis, A. Gubichev, A. Mirchev et al.

Cost estimation

Query conditions

Information
about stored data

Environment state

Cardinality
estimation Cost estimation

Cardinality estimation

0 – 4
5 – 9

10 - 14
15 - 19

20 - 24
25 - 29

30 - 34
35 - 39

40 - 44
45 - 49

50 - 54
55 - 59

60 - 64
65 - 69

70 - 74
75 - 79

80 - 84
85 - 89

90 - 94
95 – 99

100 or more

0

2000

4000

6000

8000

10000

12000

14000

Age

N
u

m
b

e
r

o
f u

se
rs

SELECT * FROM users
WHERE age < 25;

Marginal selectivity

Selectivity≃0.3
Cardinality=Tuples⋅Selectivity

Joint selectivity

SELECT * FROM users
WHERE age < 25 AND city = 'Moscow';

Selectivityage ,city=Selectivityage⋅Selectivitycity

Excluding Selectivity25<ageANDage<57=Selectivity25<age<57

We have only marginal selectivities
The conditions are assumed to be independent

Selectivity overestimation

SELECT * FROM users
WHERE position = 'cleaner' AND salary > 50000;

Selectivity cleaner≃0.2
Selectivity salary≃0.3

Selectivitysalary , cleaner≃Selectivitysalary⋅Selectivitycleaner

CorrectSelectivity salary , cleaner≃0

Wrong!

Contradiction of conditions is not the common case

Selectivity underestimation

SELECT * FROM users
WHERE position = 'cleaner' AND salary < 50000;

Selectivity cleaner≃0.2
Selectivity salary≃0.3

Selectivitysalary , cleaner≃Selectivitysalary⋅Selectivitycleaner

CorrectSelectivity salary , cleaner≃Selectivitycleaner

Wrong!

Common case is when a condition
makes more precise previous ones

Related work

● Predicting multiple metrics for queries: Better decisions
enabled by machine learning / A. Ganapathi, H. Kuno,
U. Dayal et al.

● Learning-based query performance modeling and
prediction / M. Akdere, U. Cetintemel, ̧M. Riondato et al.

● A machine learning approach to sparql query
performance prediction / Hasan R., Gandon F.

● Robust estimation of resource consumption for sql
queries using statistical techniques / J. Li, A. C. K ̈onig,
V. Narasayya, S. Chaudhuri

● Malik T., Burns R. C., Chawla N. V. A black-box
approach to query cardinality estimation.

Related work

Related work

Related work

CCA
u = aTx, v = bTy

maximizea;b p = E[uv]
subject to E[u2] = 1

E[v2] = 1

Related work

Regressor

Related work

Related work

Related work

...

And many other ways of feature construction

Related work

{ argmin
x∈all _ plans(query)

J (x)∣query∈Queries}

That was very interesting, but

Related work

● Towards predicting query execution time for
concurrent and dynamic database workloads / W.
Wu, Y. Chi, H. Hac ́ıg ̈um ̈u ̧s, J. F. Naughton

● Predicting query execution time: Are optimizer
cost models really unusable? / W. Wu, Y. Chi, S.
Zhu et al.

● Uncertainty aware query execution time
prediction / W. Wu, X. Wu, H. Hacig ̈um ̈us, J. F.
Naughton

● Sampling-based query re-optimization / Wu W.,
Naughton J. F., Singh H.

Related work

● Learning-based query performance modeling
and prediction / M. Akdere, U. Cetintemel, ̧M.
Riondato et al.

● Predicting query execution time: Are optimizer
cost models really unusable? / W. Wu, Y. Chi, S.
Zhu et al.

But
● How good are query optimizers, really? / V. Leis,
A. Gubichev, A. Mirchev et al.

Related work

Multidimensional histograms

Related work

● Selectivity estimation without the attribute value
independence assumption. / Poosala V., 1997

● Selectivity estimation in extensible databases - a
neural network approach / Lakshmi M. S., Zhou S.,
1998

● Selectivity estimation using probabilistic models /
Getoor L., Taskar B., Koller D., 2001

● A bayesian approach to estimating the selectivity of
conjunctive predicates. / Heimel M., Markl V., Murthy
K., 2009

● Cardinality estimation using neural networks / H. Liu,
M. Xu, Z. Yu et al., 2015

K nearest neighbours

1. Define similarity between two objects:

2. Define K.

3. Find the K nearest objects and compute their
weights:

4. Return weighted combination of their hidden
variables:

dist (x⃗1 , x⃗2)=…

wi=
sim (⃗xnew , x⃗(i))

sim (⃗xnew , x⃗(1))+...+sim(⃗xnew , x⃗(K))

ynew=w1 y(1)+...+wK y(K)

sim (x⃗1, x⃗2)=
1

1+dist (x⃗1 , x⃗2)

Ridge regression

1. Model:

2. Fitting parameters:

3. Make predictions:

yi≃w1⋅xi ,1+...+wD⋅xi , D+b=f (x⃗i , w⃗ , b)

L(w⃗ ,b)=∑
i=1

l

(f (x⃗i , w⃗ ,b)− yi)
2+λ∑

i=1

D

w i
2→min

w⃗ ,b

ynew≃f (⃗xnew , w⃗
min , bmin)=w1

min
⋅xnew ,1+...+wD

min
⋅xnew , D+b

min

Problem statement

Machine learning

Selectivity is 0.25!

List of conditions

l_partkey = p_partkey
AND
l_shipdate >= date '1995-12-01'
AND
l_shipdate < date '1995-12-01' + interval '1' month
AND
l_commitdate < l_receiptdate
AND
l_shipdate < l_commitdate

Marginal selectivities:
1. 0.0001
2. 0.78
3. 0.23
4. 0.4
5. 0.5

Joint selectivity

Problem statement

Machine learning

Selectivity is 0.25!

List of conditions

Marginal selectivities:
1. 0.0001
2. 0.78
3. 0.23
4. 0.4
5. 0.5

l_partkey = p_partkey
AND
l_shipdate >= const
AND
l_shipdate < const
AND
l_commitdate < l_receiptdate
AND
l_shipdate < l_commitdate

Joint selectivity

Problem statement

Selectivity users.age > const users.city = const messages.sender_id = users.id

0.25 0.25 - -

0.23 0.25 0.6 -

0.3 0.5 0.6 -

0.0005 - 0.5 0.001

...

??? 0.5 0.5 -

Problem statement

LogSelectivity users.age > const users.city = const messages.sender_id = users.id

-1.386 -1.386 0 0

-1.470 -1.386 -0.511 0

-1.204 -0.693 -0.511 0

-7.600 0 -0.693 -6.908

...

??? -0.693 -0.693 0

PostgreSQL model

Joint _ selectivity= ∏
c∈conditions

selectivityc

log Joint _ selectivity= ∑
c∈conditions

log selectivityc

A special case of ridge regression:

log Joint _ selectivity= ∑
c∈conditions

wc log selectivityc

Feedback

Regressor Optimization
method

Plan
execution

Optimization

Best plan
Training set

Feedback

Execute plan

Obtain new regresor
works good on this plan

(and on all previous plans also)

Add plan
to training set

Are estimations
correct?

Good

Yes

No

Feedback

Does it converge?

What is convergence speed?

What guarantees on obtained plans or regressor
do we have?

Feedback

Theorem 1

If regressor and its learning procedure fulfils follows:

● For each sample there is only one true selectivity

● Regressor predicts true selectivities for all samples from training set

● Duplicating a sample in training set doesn't change regressor

Then for a fixed number of queries and fixed data

● learning algorithm will converge (regressor and best plans are not
changing) in finite number of steps

● predictions are correct for all conditions sets from executed plans

Feedback

Does it converge?

What is convergence speed?

What guarantees on obtained plans or regressor
do we have?

Yes, in finite number of steps

Predictions are correct for all executed plans

Don't know

Theorem 1

Feedback

Theorem 2
with exploration by random noise

If regressor and its learning procedure fulfils follows:

● Theorem 1 conditions

● Random independent noise added to regressor's predictions

● Probability density for each sample and each selectivity is greater
than some positive .

● Each possible plan has nonzero probability to be choosen.

Then for a fixed number of queries and fixed data

● learning algorithm will converge (regressor and best plans are not
changing) in finite number of steps with probability 1

● predictions are correct for all conditions set from all possible plans

ε
s∈[0,1]

Feedback

Does it converge?

What is convergence speed?

What guarantees on obtained plans or regressor
do we have?

Choosed plans are globally the best plans available

Don't know

Yes, in finite number of steps with probability 1

Predictions are correct for all executed plans

Theorem 2
with exploration by random noise

Feedback

The tried techniques

● Ridge regression
● stochastic gradient descent

● Composition of ridge regressions
● stochastic gradient descent

● the exact solution of linear algebraic equation system by Gauss

● K Nearest Neighbours
● K = 1

Obtained results: convergence
Dataset:

The TPC Benchmark™H (TPC-H)
http://www.tpc.org/tpch/

 — number of nodes in plan
 — predicted selectivity of i-th node

 — true selectivity of i-th node

√ 1
N
∑i=1

N
(log Si−log Ŝi)

2

N
Ŝi
S i

Mean quality: 0.87
Mean quality after 100 steps: 0.87

Obtained results: convergence
Dataset:

The TPC Benchmark™H (TPC-H)
http://www.tpc.org/tpch/

Mean quality: 0.87
Mean quality after 100 steps: 0.82

Obtained results: convergence
Dataset:

The TPC Benchmark™H (TPC-H)
http://www.tpc.org/tpch/

Mean quality: 0.72
Mean quality after 100 steps: 0.67

Obtained results: convergence
Dataset:

The TPC Benchmark™H (TPC-H)
http://www.tpc.org/tpch/

Mean quality: 1.63
Mean quality after 100 steps: 1.61

Obtained results: convergence
Dataset:

The TPC Benchmark™H (TPC-H)
http://www.tpc.org/tpch/

Mean quality: 0.23
Mean quality after 100 steps: 0.06

Obtained results: convergence
Dataset:

The TPC Benchmark™H (TPC-H)
http://www.tpc.org/tpch/

Obtained results: selectivity
Dataset:

The TPC Benchmark™H (TPC-H)
http://www.tpc.org/tpch/

Obtained results: performance

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22
0

1

2

3

4

5

6

With ML

Without ML

E
xe

cu
tio

n
tim

e,
 s

.

Query type Dataset:
The TPC Benchmark™H (TPC-H)

http://www.tpc.org/tpch/

Obtained results: issues

Marginal selectivities may be not precise enough

Obtained results: issues

IndexScan

users

SeqScan

messages

SeqScan

users

SeqScan

messages

NestedLoopJoinHashJoin

SELECT *
FROM users, messages
WHERE users.id = messages.sender_id
AND users.age % 10 > 5;

users.age % 10 > 5 users.age % 10 > 5

users.id = messages.sender_id

users.id = messages.sender_id

5000 1000000 1000000 0.5

500000500000

We have to predict: We see:

Sample selection

Realtime adaptation

Space of plans exploration

Comfort zone Better plans

Space of plans exploration

Obtained results: performance acceleration

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22
0

1

2

3

4

5

6

With ML

Without ML

E
xe

cu
tio

n
tim

e,
 s

.

Query type Dataset:
The TPC Benchmark™H (TPC-H)

http://www.tpc.org/tpch/

www.postgrespro.ru

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

