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Basic algorithms Linear specification Ordinal specification Ordinal features

Decision support and Integral indicator construction

The integral indicator is a measure

of object’s quality. It is a scalar, corresponded to an object.

The integral indicator is an aggregation

of object’s features that describe various components of the term
“quality”. Expert estimation of object’s quality could be an integral

indicator, too.
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Examples
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There given a set of objects

Croatian Thermal Power Plants and Combined Heat and Power
Plants

1 Plomin 1 TPP

2 Plomin 2 TPP

3 Rijeka TPP

4 Sisak TPP

5 TE-TO Zagreb CHP

6 EL-TO Zagreb CHP

7 TE-TO Osijek CHP

8 Jetrovac TPP
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There given a set of features

Outcomes and Waste measurements

1 Electricity (GWh)

2 Heat (TJ)

3 Available net capacity (MW)

4 SO2 (t)

5 NOX (t)

6 Particles (t)

7 CO2 (kt)

8 Coal (kt)

9 Sulphur content in coal (%)

10 Liquid fuel (kt)

11 Sulphur content in liquid fuel
(%)

12 Natural gas (106 m3)
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How to construct an index?

Assign a comparison criterion

Ecological footprint of the Croatian Power Plants

Gather a set of comparable objects

TPP and CHP (Jetrovac TPP excluded)

Gather features of the objects

Waste measurements

Make a data table: objects/features

See 7 objects and 10 features in the table below

Select a model

Linear model (with most informative coefficients)
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Data table and feature optimums
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Notations

X = {xij} is the (n ×m) is the real matrix, the data set;
y = [y1, . . . , ym]

T is the vector of integral indicators;
w = [w1, . . . ,wn]

T is the vector of feature importance weights;

y0,w0 are the expert estimations of the indicators and the weights;

wT

y X
=

w1 w2 . . . wn

y1 x11 x12 . . . x1n

y2 x21 x22 . . . x2n

. . . . . . . . .
... . . .

ym xm1 xm2 . . . xmn

.

Usually, data prepared so that

• the minimum of each feature equals 0, while the maximum
equals 1;

• the bigger value of each implies better quality of the index.
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Pareto slicing

Find the non-dominated objects at each slicing level.

The object a is non-dominated

if there is no bi such that bij > aj for all features index j .
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Metric algorithm

The best (worst) object is an object that contains the (maximum)
minimum values of the features.

The index is

yi = r

√√√√
r∑

j=1

(
xij − xbest

j

)r

For r = 1, this algorithm
coincides the weighted sum
with equal weighs.
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Weighted sum

y1 = Xw0,




y1

y2

. . .

ym


 =




x11 x12 . . . x1n

x21 x22 . . . x2n

. . . . . .
... . . .

xm1 xm2 . . . xmn







w1

w2

. . .

wm


 .
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Principal Components Analysis

Y = XV , where V is the rotation matrix of the principal
components. The indicators yPCA = Xw1PC, where w1PC is the 1st

column vector of the matrix V in the singular values
decomposition X = ULV T .

PCA gives minimum mean square error between objects and their
projections.
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The Integral Indicator

Ecological Impact of the Croatian Power Plants
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The Importance Weights of the Features
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The PCA Indicator versus Pareto Slicing
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Pair-wise comparison, toy example
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The expert-statistical method

Having plan matrix X and expert-given target vector y0, compute
optimal parameters

ŵ = arg min
w∈Rn

‖Xw − y0‖
2.

Least squares:
ŵ = (XTX)−1XTy0.
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The problem of specification

• We have
expert estimations y0,w0,
calculated weights and indicators w1 = X+y0, y1 = Xw0.

• Contradiction. In general,

y1 6= y0, w1 6= w0.

• Concordance. Call the estimations y and w concordant if the
following conditions hold:

y = Xw, w = X+y.
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Expert estimations concordance

• Denote by y′0 = XX+y0 the projection of the vector y0 to the
space of the columns of the matrix X.

• α-concordance method: vectors wα, yα,

wα = αw0 + (1 − α)X+y′0, yα = (1 − α)y′0 + αXw0,

are concordant for α ∈ [0; 1].
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γ-concordance

The γ-concordance method finds concordant estimations in the
neighborhoods of the vectors w0, y

′
0 as a solution of the following

optimization problem,

wγ = arg min
w∈Rn

(ε2 + γ2δ2),

where ε2 = ‖w0 − wγ‖
2 and δ2 = ‖y′0 − yγ‖

2.
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Concordance methods comparison

The x-axis shows the values of the parameter α changing from 0 to
1, whereas parameter γ is the function of α,

γ =
α

1 − α
,

so γ changes from 0 to ∞.
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Ordinal-scaled expert estimations

Experts make estimations in the ordinal scales:

{
y1 > ... > ym > 0,

w1 > ... > wn > 0.

In matrix notations:

{
Jmy > 0,

Jnw > 0,
where J =




1 −1 0 . . . 0
0 1 −1 . . . 0
. . . . . . . . . . . . . . . . . . .

0 0 0 . . . 1


 .

Consider two cones instead of two vectors:

Y = {y | Jmy > 0},

W = {w | Jnw > 0}.
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Ordinal specification

• The linear operator X maps the cone W0 of the expert
estimations of the criteria weights w0 to the computed
cone XW0.

• The linear operator XX+ maps the cone Y0 of the expert
estimations of the objects y0 to the cone Y ′

0 = XX+Y0.
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Cones intersection: specification is needed

The cones Y,XW do not intersect: the expert estimations
contradict each other.
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Cones intersection: no specification is needed

The cones Y,XW intersect: the expert estimations do not
contradict each other.

0

y1

y2

y3
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Nearest vectors in the cones

Distance minimization:

(y1,w1) = min
y∈Y , w∈W

‖y − Xw‖2 subject to ‖Xw‖2 = 1, ‖y‖2 = 1.

Correlation maximization (ρ is the Spearman rank-correlation
coefficient):

(y1,w1) = max
y∈Y , w∈W

ρ(y,Xw) subject to ‖Xw‖2 = 1, ‖y‖2 = 1.
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Alternative approach: Nearly-Isotonic Regression

Again, the expert estimations:

1 w1 > ... > wn > 0,

2 w̃ = X+y0,

The problem of specification in rank scales:

ŵ = arg min
w∈Rn




1

2

n∑

j=1

(w̃j − wj)
2

︸ ︷︷ ︸
ref. to y0

+ λ

n−1∑

j=1

(wj − wj+1)+

︸ ︷︷ ︸
ref. to expert estimations of w




,

where λ is a regularizer.
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Nearly-isotonic regression algorithm: illustration

A blue dot is a feature weight.

z(wj) = w̃j , n = 100.
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Algorithm
Algorithm illustration

Experiment

Basic statements

The goal:

to construct a model of the IUCN Red List threatened species
categorization using expert estimations of the features.

The model must:

1 use ordinal scales of expert estimations,

2 obtain optimal complexity,

3 rely on expert-given categorization.
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Algorithm
Algorithm illustration

Experiment

Features assumptions

The following assumptions about features structure are
considered:

1 the given set of features is sufficient to construct an adequate
model;

2 the complete order relation is defined on the feature values;

3 the rule ”the bigger the better” is valid, that is the greater
feature value causes the greater preference by an object;

4 different expert estimations of the same object are allowed.
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Algorithm illustration

Experiment

List of features

1 Population size.

2 Growth rate.

3 Occurency/density.

4 Physiological state.

5 Habitat state.

6 Population structure trend.

7 Monitoring.

8 New populations.

9 Capacity build.
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Algorithm illustration

Experiment

Input data

A data fragment.

Species: Russian desman

Feature Condition Change trend
Population size 3 – high;

2 – low;
1 – critical

4 – grows;
3 – stable;
2 – decreases slowly;
1 – decreases rapidly

Population
structure

2 – complex;
1 – simple

2 – stable;
1 – local populations
disappear

A partial order is defined over the set of features.
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Algorithm illustration

Experiment

Problem statement

There is given

a set of pairs D = {(xi , yi )}, i ∈ I = {1, . . . ,m}.

Ordinal scales and class labels

Every object x = [χ1, . . . , χj , . . . , χd ]
T , is described by

ordinal-scaled features χj ∈ Lj = {1 ≺ · · · ≺ kj}. A partial order is
set over the set of features.
Over the set Y = {1, 2, 3} of the class labels y it is given a strict
order relation: 1 ≺ 2 ≺ 3.

The goal is to construct a monotone function ϕ : x 7→ ŷ

ϕopt = arg min
ϕ

S(ϕ) = arg min
ϕ

1

m

∑

i∈I

r (yi , ϕ(xi )).

5 / 24



Algorithm
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Experiment

Twoclass monotone classification
Multiclass monotone classification

Dominance relation

Without features hierarchy
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xn ≻n xi ,
if xnj ≥ xij for each j ∈ J .

xp ≻p xk ,
if xpj ≤ xkj for each j ∈ J .

Any object doesn’t dominate
itself: x ⊁n x, x ⊁p x.
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Algorithm illustration

Experiment

Twoclass monotone classification
Multiclass monotone classification

Dominance relation

With features hierarchy
Leat a feature r be more important than t.

xn ≻ñ xi , if xn ≻n xi
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Any object doesn’t dominate
itself: x ⊁ñ x, x ⊁p̃ x.
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Experiment

Twoclass monotone classification
Multiclass monotone classification

Dominance areas

The feature 1 is more

important than 2

The feature 2 is more

important than 1

xn1 > xn2,
xp1 < xp2
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Algorithm illustration

Experiment

Twoclass monotone classification
Multiclass monotone classification

Optimal Pareto fronts

POFn, POFp

A set of objects x, if for each element doesn’t exist any other
element x′ such that
POFn : x′ ≻n x (x′ ≻ñ x); POFp : x′ ≻p x (x′ ≻p̃ x).
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Experiment

Twoclass monotone classification
Multiclass monotone classification

Two-class classification

x — a classified object
f (·) — a classifier function

f (x) =























0, xn ≻n x;

1, xp ≻p x;

f

(

arg min
x′∈POFn∪POFp

(

ρ(x, x′)
)

)

, otherwise.

POFn,POFp are boundaries of dominance spaces for the
corresponding optimal Pareto fronts.

ρ is a distance function between objects,

ρ(x, x′) =
d
∑

j=1

r(xj , x
′
j ).
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Experiment

Twoclass monotone classification
Multiclass monotone classification

Two-class classification example
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№ Object x f (x)

1 (4,5) 0

2 (6,7) 1

3 (9,6) 1
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Experiment

Twoclass monotone classification
Multiclass monotone classification

Separable sample construction
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Experiment

Twoclass monotone classification
Multiclass monotone classification

Monotone classifier definition

{1 ≺ · · · ≺ u ≺ u + 1 ≺ · · · ≺ z} = Z — class labels

fu,u+1 : x 7→ ŷ ∈ {0, 1} — two-class classifier for a pair of adjacent
classes

«0» — classes with labels y � u

«1» — classes with labels y � u + 1

ϕ(x) =







min
u∈Z

{u | fu,u+1(x) = 0}, if {u | fu,u+1(x) = 0} 6= ∅;

z , if {u | fu,u+1(x) = 0} = ∅.

1, 2 ... u − 1, u u, u + 1 ... z − 1, z

1 ... 1 0 ... 0
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Experiment

Twoclass monotone classification
Multiclass monotone classification

Multiclass classification example
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№ Object x f12(x) f23(x) ϕ(x)

1 (1,1) 0 0 1

2 (5,4) 1 0 2

3 (9,9) 1 1 3

14 / 24



Algorithm
Algorithm illustration

Experiment

Twoclass monotone classification
Multiclass monotone classification

Fronts extension for monotone classification

2 4 6 8
1

2

3

4

5

6

7

8

9

Feature 1

Fe
at

ur
e 

2

(e) Without extension

2 4 6 8
1

2

3

4

5

6

7

8

9

Feature 1
Fe

at
ur

e 
2

(f) With extension

A common object for two n-fronts
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Experiment

Twoclass monotone classification
Multiclass monotone classification

Admissible classifiers

Transitivity condition
{

fu,u+1(x) = 0 ⇒ f(u+s)(u+1+s)(x) = 0 for each s : (u + 1 + s) 6 z ,

fu,u+1(x) = 1 ⇒ f(u−s)(u+1−s)(x) = 1 for each s : (u − s) > 1.

Definition

Classifier ϕ is called admissible, if for every classifier function fu,u+1

the transitivity condition holds.

Theorem

If the Pareto optimal fronts POFn(u) and POFp(u + 1) don’t
intersect for each u = 1, . . . , z − 1, then the transitivity condition
holds for any classified object.
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Experiment

Initial sample of objects
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Experiment

Objects of the category 2
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Experiment

Optimal Pareto front (POFn)
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Experiment

Objects of the category 2 and 3
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Experiment

Optimal Pareto fronts (POFn, POFp)
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Experiment

Model with all fronts
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Algorithm illustration

Experiment

Excluded defective objects
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Experiment
Algorithms comparison

Algorithms comparison

Algorithm
Mean

error on
test

LOO
Time of model

construction, sec

POF (proposed) 0.22 0.56 2.1
Decision trees 0.25 0.69 0.4
Curvilinear regression 1 0.57 0.71 3.6
Cones 2 0.29 0.58 1.2
Copulas 3 0.57 0.61 0.25
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