Постановка задач и выбор моделей в машинном обучении

Вадим Викторович Стрижов

Московский физико-технический институт

Осенний семестр 2019

#### Decision support and Integral indicator construction

# The integral indicator is a measure

of object's quality. It is a scalar, corresponded to an object.

# The integral indicator is an aggregation

of object's features that describe various components of the term "quality". *Expert estimation of object's quality could be an integral indicator, too.* 

# **Examples**

| Index name                          | Objects      | Features                    | Model                    |  |  |  |  |
|-------------------------------------|--------------|-----------------------------|--------------------------|--|--|--|--|
| TOEFL exams                         | Students     | Tests                       | Sum of scores            |  |  |  |  |
| Eurovision                          | Singers      | Televotes,<br>Jury votes    | Linear<br>(weighted sum) |  |  |  |  |
| S&P500, NASDAQ                      | Time-ticks   | Shares<br>(prices, volumes) | Non-linear               |  |  |  |  |
| Bank ratings                        | Banks        | Requirements                | By an expert commission  |  |  |  |  |
| Integral Indicator of Croatian PP's | Power Plants | Waste<br>measurements       | Linear                   |  |  |  |  |

## There given a set of objects

Croatian Thermal Power Plants and Combined Heat and Power Plants

- Plomin 1 TPP
- 2 Plomin 2 TPP
- 8 Rijeka TPP
- 4 Sisak TPP
- 5 TE-TO Zagreb CHP
- 6 EL-TO Zagreb CHP
- TE-TO Osijek CHP
- 8 Jetrovac TPP



# There given a set of features

#### Outcomes and Waste measurements

- Electricity (GWh)
- 2 Heat (TJ)
- 3 Available net capacity (MW)
- 4 SO<sub>2</sub> (t)
- **5** NOX (t)
- 6 Particles (t)
- CO<sub>2</sub> (kt)
- 8 Coal (kt)
- Sulphur content in coal (%)
- ① Liquid fuel (kt)
- Sulphur content in liquid fuel(%)
- Natural gas (10<sup>6</sup> m<sup>3</sup>)



#### How to construct an index?

Assign a comparison criterion Ecological footprint of the Croatian Power Plants

Gather a set of comparable objects TPP and CHP (Jetrovac TPP excluded)

Gather features of the objects

Waste measurements

Make a data table: objects/features

See 7 objects and 10 features in the table below

Select a model

Linear model (with most informative coefficients)

# Data table and feature optimums

| N | Power Plant      | Electricity<br>(GWh) | Heat (TJ) | Available net<br>capacity (MW) | SO <sub>2</sub> (t) | NOx (t) | Particles (t) | CO2 (kt) | Coal (kt) | Sulphur content<br>in coal (%) | Liquid fuel (kt) | Sulphur content<br>in liquid fuel (%) | Natural gas<br>(10 <sup>6</sup> m <sup>3</sup> ) |
|---|------------------|----------------------|-----------|--------------------------------|---------------------|---------|---------------|----------|-----------|--------------------------------|------------------|---------------------------------------|--------------------------------------------------|
| 1 | Plomin 1 TPP     | 452                  | 0         | 98                             | 1950                | 1378    | 140           | 454      | 198       | 0.54                           | 0.43             | 0.2                                   | 0                                                |
| 2 | Plomin 2 TPP     | 1576                 | 0         | 192                            | 581                 | 1434    | 60            | 1458     | 637       | 0.54                           | 0.37             | 0.2 0                                 |                                                  |
| 3 | Rijeka TPP       | 825                  | 0         | 303                            | 6392                | 1240    | 171           | 616      | 0         | 0                              | 200              | 2.2                                   | 0                                                |
| 4 | Sisak TPP        | 741                  | 0         | 396                            | 3592                | 1049    | 255           | 573      | 0         | 0                              | 112              | 1.79                                  | 121                                              |
| 5 | TE-TO Zagreb CHP | 1374                 | 481       | 337                            | 2829                | 705     | 25            | 825      | 0         | 0                              | 80               | 1.83                                  | 309                                              |
| 6 | EL-TO Zagreb CHP | 333                  | 332       | 90                             | 1259                | 900     | 19            | 355      | 0         | 0                              | 39               | 2.1                                   | 126                                              |
| 7 | TE-TO Osijek CHP | 114                  | 115       | 42                             | 1062                | 320     | 35            | 160      | 0         | 0                              | 37               | 1.1                                   | 24                                               |
|   |                  |                      |           | max                            | min                 | min     | min           | min      | min       | min                            | min              | min                                   | min                                              |

# Notations

 $X = \{x_{ij}\}$  is the  $(n \times m)$  is the real matrix, the data set;  $\mathbf{y} = [y_1, \dots, y_m]^T$  is the vector of integral indicators;  $\mathbf{w} = [w_1, \dots, w_n]^T$  is the vector of feature importance weights;

 $\mathbf{y}_0, \mathbf{w}_0$  are the expert estimations of the indicators and the weights;

|                                              |   | _                     | w <sub>1</sub>         | <i>W</i> <sub>2</sub>  |   | Wn                                   |
|----------------------------------------------|---|-----------------------|------------------------|------------------------|---|--------------------------------------|
| $1 \dots T$                                  |   | <i>y</i> <sub>1</sub> | <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> |   | x <sub>1n</sub><br>x <sub>2n</sub> . |
| $\frac{\mathbf{w}^T}{\mathbf{y} \mathbf{X}}$ | = | <i>y</i> <sub>2</sub> | <i>x</i> <sub>21</sub> | <i>x</i> <sub>22</sub> |   | x <sub>2n</sub> .                    |
| y X                                          |   |                       |                        |                        | ÷ |                                      |
|                                              |   | Уm                    | $x_{m1}$               | <br>x <sub>m2</sub>    |   | x <sub>mn</sub>                      |

#### Usually, data prepared so that

- the minimum of each feature equals 0, while the maximum equals 1;
- the bigger value of each implies better quality of the index.

#### Pareto slicing

# Find the non-dominated objects at each slicing level.



#### The object a is non-dominated

if there is no  $\mathbf{b}_i$  such that  $b_{ij} \ge a_j$  for all features index j.

# Metric algorithm

The best (worst) object is an object that contains the (maximum) minimum values of the features.



٠

# Weighted sum

$$\mathbf{y}_1 = X \mathbf{w}_0,$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_m \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \cdots & \cdots & \vdots & \cdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \cdots \\ w_m \end{bmatrix}$$

# **Principal Components Analysis**

Y = XV, where V is the rotation matrix of the principal components. The indicators  $\mathbf{y}_{PCA} = X\mathbf{w}_{1PC}$ , where  $\mathbf{w}_{1PC}$  is the 1<sup>st</sup> column vector of the matrix V in the singular values decomposition  $X = ULV^{T}$ .



PCA gives minimum mean square error between objects and their projections.

#### The Integral Indicator

#### Ecological Impact of the Croatian Power Plants



# The Importance Weights of the Features

| Feature                       | Weight | _ |      |     |                  |               |      |     |  |
|-------------------------------|--------|---|------|-----|------------------|---------------|------|-----|--|
| Coal (t)                      | 0.38   |   |      |     |                  |               |      |     |  |
| Sulphur content in coal (%)   | 0.37   |   |      |     |                  |               |      |     |  |
| NOx (t)                       | 0.35   |   |      |     |                  |               |      |     |  |
| Liquid fuel (t)               | 0.34   |   |      |     |                  |               |      |     |  |
| SO2 (t)                       | 0.34   |   |      |     |                  |               |      |     |  |
| Particles (t)                 | 0.33   |   |      |     |                  |               |      |     |  |
| Natural gas (103 m3)          | 0.30   |   |      |     |                  |               |      |     |  |
| CO2 (kt)                      | 0.29   |   |      |     |                  |               |      |     |  |
| Sulphur content in I.fuel (%) | 0.18   |   |      |     |                  |               |      |     |  |
| Available net capacity (MW)   | 0.12   |   |      |     |                  |               | 1    | 1   |  |
|                               |        | 0 | 0.05 | 0.1 | 0.15<br>Features | 0.2<br>' impo | 0.25 | 0.3 |  |

Features' importance

#### The PCA Indicator versus Pareto Slicing



#### Pair-wise comparison, toy example



If an object in a row is better than the other one in a column then put "+", otherwise "-".

Make a graph, row + column means  $row \bullet - \bullet column$ . Find the top and remove extra nodes.

#### The expert-statistical method

Having plan matrix  $\boldsymbol{X}$  and expert-given target vector  $\boldsymbol{y}_0,$  compute optimal parameters

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}\in\mathbb{R}^n} \|\mathbf{X}\mathbf{w} - \mathbf{y}_0\|^2.$$

Least squares:

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}_0.$$

#### The problem of specification

• We have

expert estimations  $\mathbf{y}_0, \mathbf{w}_0$ , calculated weights and indicators  $\mathbf{w}_1 = \mathbf{X}^+ \mathbf{y}_0, \ \mathbf{y}_1 = \mathbf{X} \mathbf{w}_0$ .

• Contradiction. In general,

$$\mathbf{y}_1 \neq \mathbf{y}_0, \quad \mathbf{w}_1 \neq \mathbf{w}_0.$$

• **Concordance.** Call the estimations **y** and **w** *concordant* if the following conditions hold:

$$\mathbf{y} = \mathbf{X}\mathbf{w}, \quad \mathbf{w} = \mathbf{X}^+\mathbf{y}.$$

#### Expert estimations concordance

- Denote by  $\mathbf{y}'_0 = \mathbf{X}\mathbf{X}^+\mathbf{y}_0$  the projection of the vector  $\mathbf{y}_0$  to the space of the columns of the matrix  $\mathbf{X}$ .
- $\alpha$ -concordance method: vectors  $\mathbf{w}_{\alpha}, \mathbf{y}_{\alpha}$ ,

$$\mathbf{w}_{lpha} = lpha \mathbf{w}_{0} + (1 - lpha) \mathbf{X}^{+} \mathbf{y}_{0}', \quad \mathbf{y}_{lpha} = (1 - lpha) \mathbf{y}_{0}' + lpha \mathbf{X} \mathbf{w}_{0},$$

are concordant for  $\alpha \in [0; 1]$ .



#### $\gamma$ -concordance

The  $\gamma$ -concordance method finds concordant estimations in the neighborhoods of the vectors  $\mathbf{w}_0, \mathbf{y}'_0$  as a solution of the following optimization problem,

$$\mathbf{w}_{\gamma} = \arg\min_{\mathbf{w}\in\mathbb{R}^n} (\varepsilon^2 + \gamma^2 \delta^2),$$



#### **Concordance methods comparison**

The x-axis shows the values of the parameter  $\alpha$  changing from 0 to 1, whereas parameter  $\gamma$  is the function of  $\alpha$ ,

$$\gamma = \frac{\alpha}{1 - \alpha},$$

so  $\gamma$  changes from 0 to  $\infty$ .



•

#### Ordinal-scaled expert estimations

Experts make estimations in the ordinal scales:

$$\begin{cases} y_1 \geqslant \dots \geqslant y_m \geqslant 0, \\ w_1 \geqslant \dots \geqslant w_n \geqslant 0. \end{cases}$$

In matrix notations:

$$\begin{cases} J_m \mathbf{y} \ge 0, \\ J_n \mathbf{w} \ge 0, \end{cases} \quad \text{where } J = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 0 & 1 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Consider two cones instead of two vectors:

$$\mathcal{Y} = \{ \mathbf{y} \mid J_m \mathbf{y} \ge 0 \},$$
$$\mathcal{W} = \{ \mathbf{w} \mid J_n \mathbf{w} \ge 0 \}.$$

# **Ordinal specification**

- The linear operator X maps the cone  $\mathcal{W}_0$  of the expert estimations of the criteria weights  $w_0$  to the computed cone  $X\mathcal{W}_0$ .
- The linear operator  $XX^+$  maps the cone  $\mathcal{Y}_0$  of the expert estimations of the objects  $\mathbf{y}_0$  to the cone  $\mathcal{Y}'_0 = XX^+\mathcal{Y}_0$ .



# Cones intersection: specification is needed

The cones  $\mathcal{Y}, \mathbf{X}\mathcal{W}$  do not intersect: the expert estimations **contradict** each other.



#### Cones intersection: no specification is needed

The cones  $\mathcal{Y}, \mathbf{X}\mathcal{W}$  intersect: the expert estimations **do not contradict** each other.



#### Nearest vectors in the cones

Distance minimization:

 $(\mathbf{y}^1, \mathbf{w}^1) = \min_{\mathbf{y} \in \mathcal{Y}, \ \mathbf{w} \in \mathcal{W}} \|\mathbf{y} - X\mathbf{w}\|_2$  subject to  $\|X\mathbf{w}\|_2 = 1, \|\mathbf{y}\|_2 = 1$ .

Correlation maximization ( $\rho$  is the Spearman rank-correlation coefficient):

$$(\mathbf{y}^1, \mathbf{w}^1) = \max_{\mathbf{y} \in \mathcal{Y}, \ \mathbf{w} \in \mathcal{W}} \rho(\mathbf{y}, X\mathbf{w}) \text{ subject to } \|X\mathbf{w}\|_2 = 1, \|\mathbf{y}\|_2 = 1.$$



#### Alternative approach: Nearly-Isotonic Regression

Again, the expert estimations:

$$w_1 \geqslant ... \geqslant w_n \geqslant 0,$$

$$\widetilde{\mathbf{w}} = X^+ \mathbf{y}_0,$$

The problem of specification in rank scales:

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}\in\mathbb{R}^n} \left( \underbrace{\frac{1}{2}\sum_{j=1}^n (\widetilde{w}_j - w_j)^2}_{\text{ref. to } \mathbf{y}_0} + \underbrace{\lambda\sum_{j=1}^{n-1} (w_j - w_{j+1})_+}_{\text{ref. to expert estimations of } \mathbf{w}} \right),$$

where  $\lambda$  is a regularizer.

# Nearly-isotonic regression algorithm: illustration

A blue dot is a feature weight.

$$z(w_j) = \widetilde{w}_j, \quad n = 100.$$



# **Basic statements**

## The goal:

to construct a model of the IUCN Red List threatened species categorization using expert estimations of the features.

#### The model must:

- 1 use ordinal scales of expert estimations,
- 2 obtain optimal complexity,
- **3** rely on expert-given categorization.

# Features assumptions

# The following assumptions about features structure are considered:

- the given set of features is sufficient to construct an adequate model;
- 2 the complete order relation is defined on the feature values;
- the rule "the bigger the better" is valid, that is the greater feature value causes the greater preference by an object;
- () different expert estimations of the same object are allowed.

# List of features

- Population size.
- Growth rate.
- Occurency/density.
- 4 Physiological state.
- 6 Habitat state.
- 6 Population structure trend.
- Monitoring.
- 8 New populations.
- O Capacity build.

# Input data

A data fragment.

# Species: Russian desman

| Feature                 | Condition                                    | Change trend                                                                                                      |
|-------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Population size         | 3 – high;<br><b>2</b> – low;<br>1 – critical | <ul> <li>4 - grows;</li> <li>3 - stable;</li> <li>2 - decreases slowly;</li> <li>1 - decreases rapidly</li> </ul> |
| Population<br>structure | 2 – complex;<br>1 – simple                   | <b>2</b> – stable;<br>1 – local populations<br>disappear                                                          |

A partial order is defined over the set of features.

Algorithm Algorithm illustration Experiment

# Problem statement

# There is given

a set of pairs 
$$\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}, i \in \mathcal{I} = \{1, \dots, m\}.$$

#### Ordinal scales and class labels

Every object  $\mathbf{x} = [\chi_1, \dots, \chi_j, \dots, \chi_d]^T$ , is described by ordinal-scaled features  $\chi_j \in \mathbb{L}_j = \{1 \prec \dots \prec k_j\}$ . A partial order is set over the set of features. Over the set  $\mathbb{Y} = \{1, 2, 3\}$  of the class labels y it is given a strict order relation:  $1 \prec 2 \prec 3$ .

## The goal is to construct a monotone function $\varphi : \mathbf{x} \mapsto \hat{y}$

$$\varphi_{opt} = \operatorname*{arg\,min}_{\varphi} S(\varphi) = \operatorname*{arg\,min}_{\varphi} \frac{1}{m} \sum_{i \in \mathcal{I}} r(y_i, \varphi(\mathbf{x}_i)).$$

Algorithm Algorithm illustration Experiment

Twoclass monotone classification Multiclass monotone classification

#### **Dominance relation**



Any object doesn't dominate itself:  $\mathbf{x} \not\succ_n \mathbf{x}$ ,  $\mathbf{x} \not\succ_p \mathbf{x}$ .

Twoclass monotone classification Multiclass monotone classification

# **Dominance relation**

# With features hierarchy

Leat a feature r be more important than t.

$$\begin{array}{c} \mathbf{x}_{n} \succ_{\tilde{n}} \mathbf{x}_{i}, \text{ if } \mathbf{x}_{n} \succ_{n} \mathbf{x}_{i} \\ \text{or } x_{nr} > x_{nt} \text{ and } \mathbf{x}_{n}^{rt} \succ_{n} \mathbf{x}_{i}. \\ \mathbf{x}_{p} \succ_{\tilde{p}} \mathbf{x}_{k}, \text{ if } \mathbf{x}_{p} \succ_{p} \mathbf{x}_{k} \\ \text{or } x_{pr} < x_{pt} \text{ and } \mathbf{x}_{p}^{rt} \succ_{p} \mathbf{x}_{k}. \end{array}$$
Any object doesn't dominate itself:  $\mathbf{x} \neq_{\tilde{n}} \mathbf{x}, \quad \mathbf{x} \neq_{\tilde{p}} \mathbf{x}.$ 

Algorithm Algorithm illustration Experiment

Twoclass monotone classification Multiclass monotone classification

#### **Dominance** areas



Twoclass monotone classification Multiclass monotone classification

### **Optimal Pareto fronts**

## $POF_n$ , $POF_p$

A set of objects x, if for each element doesn't exist any other element x' such that  $POF_n : x' \succ_n x (x' \succ_{\tilde{n}} x); POF_p : x' \succ_p x (x' \succ_{\tilde{p}} x).$ 



Twoclass monotone classification Multiclass monotone classification

### Two-class classification

 $\mathbf{x}$  — a classified object  $f(\cdot)$  — a classifier function

$$f(\mathbf{x}) = \begin{cases} 0, & \mathbf{x}_n \succ_n \mathbf{x}; \\ 1, & \mathbf{x}_p \succ_p \mathbf{x}; \\ f\left(\underset{\mathbf{x}' \in \overline{\mathsf{POF}}_n \cup \overline{\mathsf{POF}}_p}{\arg\min}\left(\rho(\mathbf{x}, \mathbf{x}')\right)\right), & \text{otherwise} \end{cases}$$

 $\overline{\text{POF}}_n, \overline{\text{POF}}_p$  are boundaries of dominance spaces for the corresponding optimal Pareto fronts.

 $\rho$  is a distance function between objects,

$$\rho(\mathbf{x},\mathbf{x}') = \sum_{j=1}^{d} r(x_j,x_j').$$

Twoclass monotone classification Multiclass monotone classification

## Two-class classification example



Twoclass monotone classification Multiclass monotone classification

### Separable sample construction



Twoclass monotone classification Multiclass monotone classification

### Monotone classifier definition

$$\{1 \prec \cdots \prec u \prec u + 1 \prec \cdots \prec z\} = \mathbb{Z} - \text{class labels}$$

 $f_{u,u+1} \colon \mathbf{x} \mapsto \hat{y} \in \{0,1\}$  — two-class classifier for a pair of adjacent classes

«0» — classes with labels  $y \leq u$ «1» — classes with labels  $y \geq u + 1$ 

$$\varphi(\mathbf{x}) = \begin{cases} \min_{u \in \mathbb{Z}} \{u \mid f_{u,u+1}(\mathbf{x}) = 0\}, & \text{if } \{u \mid f_{u,u+1}(\mathbf{x}) = 0\} \neq \emptyset; \\ z, & \text{if } \{u \mid f_{u,u+1}(\mathbf{x}) = 0\} = \emptyset. \end{cases}$$

| 1, 2 | <br>u — 1, u | u, u + 1 | <br>z – 1, z |
|------|--------------|----------|--------------|
| 1    | <br>1        | 0        | <br>0        |

Twoclass monotone classification Multiclass monotone classification

# Multiclass classification example



| N⁰ | Object x | $f_{12}(x)$ | $f_{23}(x)$ | $\varphi(x)$ |
|----|----------|-------------|-------------|--------------|
| 1  | (1,1)    | 0           | 0           | 1            |
| 2  | (5,4)    | 1           | 0           | 2            |
| 3  | (9,9)    | 1           | 1           | 3            |

Twoclass monotone classification Multiclass monotone classification

### Fronts extension for monotone classification



A common object for two *n*-fronts

Twoclass monotone classification Multiclass monotone classification

### Admissible classifiers

### Transitivity condition

$$\begin{cases} f_{u,u+1}(\mathbf{x}) = 0 \Rightarrow f_{(u+s)(u+1+s)}(\mathbf{x}) = 0 & \text{for each } s \colon (u+1+s) \leqslant z, \\ f_{u,u+1}(\mathbf{x}) = 1 \Rightarrow f_{(u-s)(u+1-s)}(\mathbf{x}) = 1 & \text{for each } s \colon (u-s) \geqslant 1. \end{cases}$$

### Definition

Classifier  $\varphi$  is called *admissible*, if for every classifier function  $f_{u,u+1}$  the transitivity condition holds.

#### Theorem

If the Pareto optimal fronts  $POF_n(u)$  and  $POF_p(u+1)$  don't intersect for each u = 1, ..., z - 1, then the transitivity condition holds for any classified object.

### Initial sample of objects



### Objects of the category 2



# Optimal Pareto front (POF<sub>n</sub>)



# Objects of the category 2 and 3



# Optimal Pareto fronts ( $POF_n$ , $POF_p$ )



## Model with all fronts



### Excluded defective objects



#### Algorithms comparison

| Algorithm                           | Mean<br>error on<br>test | LOO  | Time of model construction, sec |
|-------------------------------------|--------------------------|------|---------------------------------|
| POF (proposed)                      | 0.22                     | 0.56 | 2.1                             |
| Decision trees                      | 0.25                     | 0.69 | 0.4                             |
| Curvilinear regression <sup>1</sup> | 0.57                     | 0.71 | 3.6                             |
| Cones <sup>2</sup>                  | 0.29                     | 0.58 | 1.2                             |
| Copulas <sup>3</sup>                | 0.57                     | 0.61 | 0.25                            |

<sup>&</sup>lt;sup>1</sup>5. M.P. Kuznetsov, V.V. Strijov, M.M. Medvednikova Multiclass classification algorithm of the ordinal scaled objects // St. Petersburg State Polytechnical University Journal. Computer Science. Telecommunication and Control Systems, 2012. № 5. C. 92-95.

<sup>&</sup>lt;sup>2</sup>1. M.P. Kuznetsov and V.V. Strijov. Methods of expert estimations concordance for integral quality estimation Expert Systems with Applications, 41(4):1988-1996, March 2014.

 $<sup>^{3}</sup>$ Kuznetsov M.P. Integral indicator construction using copulas // Journal of Machine Learning and Data Analysis. 2012. V. 1, № 4. Pp. 411-419.