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Abstract

For a given natural k, a problem of k collaborating salesmen
sharing the same set of cities (nodes of graph) to serve is studied.

We call it Minimum Weight k-Size Cycle Cover Problem
(Min-k-SCCP).

Related problems

Min-1-SCCP is Traveling Salesman Problem (TSP)
Vertex-Disjoint Cycle Cover Problem
k-Peripatetic Salesmen Problem
Min-L-CCP

Min-k-SCCP can be considered as a special case of Vehicle
Routing Problem (VRP)
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Abstract — Motivation

Nuclear Power Plant dismantling problem

high-precision metal shape cutting problem
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Abstract - ctd.

Results

1 Min-k-SCCP is strongly NP-hard and hardly approximable in the
general case

2 Metric and Euclidean cases are intractable as well

3 2-approximation algorithm for Metric Min-k-SCCP is proposed

4 Polynomial-time approximation scheme (PTAS) for Min-2-SCCP
on the plane is constructed
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Definitions and Notation

Standard notation is used

R — field of real numbers

N — field of rational numbers

Nm — integer segment {1, ...,m},
N0
m — segment {0, ...,m}.

G = (V,E,w) is a simple complete weighted (di)graph with
loops, edge-weight function w : E → R
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Minimum Weight k-Size Cycle Cover Problem
(Min-k-SCCP)

Input: graph G = (V,E,w).

Find: a minimum-cost collection C = C1, ..., Ck of vertex-disjoint cycles
such that

⋃
i∈Nk

V (Ci) = V .

min

k∑
i=1

W (Ci) ≡
k∑
i=1

∑
e∈E(Ci)

w(e)

s.t.

C1, . . . , Ck are cycles in G

Ci ∩ Cj = ∅
V (C1) ∪ . . . ∪ V (Ck) = V
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Metric and Euclidean Min-k-SCCP

Metric Min-k-SCCP

wij > 0

wii = 0

wij = wji

wij + wjk > wik ({i, j, k})

Euclidean Min-k-SCCP

For some d > 1, V = {v1, . . . , vn} ⊂ Rd

wij = ‖vi − vj‖2
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Instance of Euclidean Min-2-SCCP
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Complexity

Known facts

(Karp, 1972) TSP is strongly NP-hard

(Sahni and Gonzales, 1976) TSP can not be approximated within
O(2n) (unless P = NP )

(Papadimitriou, 1977) Euclidean TSP is NP-hard
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Complexity

Theorem 1

For any k > 1, Min-k-SCCP is strongly NP-hard.

Proof idea

Reduce TSP to Min-k-SCCP by cloning the instance

Spread them apart

Show that any optimal solution of Min-k-SCCP consists of
cheapest Hamiltonian cycles for the initial TSP

Corollary

Min-k-SCCP also can not be approximated within O(2n) (unless
P = NP )

Metric Min-k-SCCP and Euclidean Min-k-SCCP are NP-hard as
well
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Preliminary results

Minimum spanning forest

k-forest is an acyclic graph with k connected components

For any k-forest F , weight (cost)

W (F ) =
∑

e∈E(F )

w(e)

k-Minimum Spanning Forest (k-MSF) Problem
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Preliminary results

Kruskal’s algorithm for k-MSF

1 Start from the empty n-forest F0.

2 For each i ∈ Nn−k add the edge

ei = arg min{w(e) : Fi−1 ∪ {e} remains acyclic}

to the forest Fi−1.

3 Output k-forest F ∗.

Theorem 2

F ∗ is k-Minimum Spanning Forest.
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Algorithm

2-approximation algorithm for Metric Min-k-SCCP

Following to the scheme of well-known 2-approx. algorithm for Metric
TSP.
Wlog. assume k < n.
Algorithm:

1 Build a k-MSF F

2 Take edges of F twice

3 For any non-trivial connected component, find a Eulerian cycle

4 Transform them into Hamiltonian cycles

5 Output collection of these cycles adorned by some number of
isolated vertices
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Algorithm

Correctness proof

Assertion

Approximation ratio:

2(1− 2/n) 6 sup
I

APP (I)

OPT (I)
6 2(1− 1/n)

Running-time:
O(n2 log n).

Proof sketch

Consider optimal cycle cover C (with weight OPT).
Removing the most heavy edge from any non-empty cycle transform
it into some spanning forest F (C) with cost SF.
Then

MSF 6 SF 6 OPT (1− 1/n),

where
APP 6 2 ·MSF 6 2(1− 1/n)OPT.
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Algorithm

Lower bound - instance
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Algorithm

Lower bound - 2-forest
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Algorithm

Lower bound - approximation
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Algorithm

Lower bound - better approximation
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Algorithm

Lower bound - discussion

number of nodes n = 4p+ 2

APP = 8p

OPT ≤ 4p+ 2 + 2ε(2p− 1)

for approximation ratio r we have

r ≥ sup
ε∈(0,1)

8p

4p+ 2 + 2ε(2p− 1)
=

4p

2p+ 1
= 2(1− 2/n)
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Preprocessing

PTAS for Euclidean Min-2-SCCP on the plane

Definition

For a combinatorial optimization problem, Polynomial-Time
Approximation Scheme (PTAS) is a collection of algorithms such that
for any fixed c > 1 there is an algorithm finding a
(1 + 1/c)-approximate solution in a polynomial time depending on c.
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Preprocessing

Instance preprocessing

For an arbitrary instance of Min-2-SCCP, there exists one of the
following alternatives (each of them can be verified in polynomial
time)

1 The instance in question can be decomposed into 2 independent
TSP instances;

2 Inter-node distance can be overestimated using some function
that depends on OPT linearly.
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Preprocessing

Young’s inequality

Consider a set S of diameter D in d-dimensional Euclidean space, let
R be a radius of the smallest containing sphere.
Then

1

2
D 6 R 6

(
d

2d+ 2

) 1
2

D.

In particular, in the plane:

1

2
D 6 R 6

√
3

3
D. (1)
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Preprocessing

Instance preprocessing - ctd.

Construct 2-MSF consisting of trees T1 and T2.

let D1, D2 be diameters of T1 and T2, and R1, R2 be radii of the
smallest circles B(T1) and B(T2) containing the trees T1 and T2.
Denote D = max{D1, D2} and R = max{R1, R2}.



Intro Problem statement Complexity Metric Min-k-SCCP PTAS for Min-2-SCCP Conslusion

Preprocessing

Instance preprocessing - ctd.

Construct 2-MSF consisting of trees T1 and T2.

let D1, D2 be diameters of T1 and T2, and R1, R2 be radii of the
smallest circles B(T1) and B(T2) containing the trees T1 and T2.
Denote D = max{D1, D2} and R = max{R1, R2}.



Intro Problem statement Complexity Metric Min-k-SCCP PTAS for Min-2-SCCP Conslusion

Preprocessing

Instance preprocessing - ctd.

Construct 2-MSF consisting of trees T1 and T2.

let D1, D2 be diameters of T1 and T2, and R1, R2 be radii of the
smallest circles B(T1) and B(T2) containing the trees T1 and T2.
Denote D = max{D1, D2} and R = max{R1, R2}.



Intro Problem statement Complexity Metric Min-k-SCCP PTAS for Min-2-SCCP Conslusion

Preprocessing

Problem decomposition

Define ρ(T1, T2) as a distance between centers of circles B(T1) and
B(T2).

Assertion

If ρ(T1, T2) > 5R then the considered instance Min-2-SCCP can be
decomposed into two TSP instances for G(T1) and G(T2).

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC
C = {C1, C2} such that C1 ∩ T1 6= ∅ and C1 ∩ T2 6= ∅.

Then C1 contains at least two edges, spanning T1 and T2
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Preprocessing

Problem decomposition

Proof (ctd.)

By the condition, the weight of each of them is greater than 3R

Remove them and close the cycles inside B(T1) and B(T2)

Obtain the lighter 2-SCC



Intro Problem statement Complexity Metric Min-k-SCCP PTAS for Min-2-SCCP Conslusion

Preprocessing

Problem decomposition

Statement

If ρ(T1, T2) 6 5R then the maximum inter-node distance D(G) for the

graph G is no more than 7
√
3

3 OPT .

Proof sketch

In our case D(G) 6 7R

Due to Young’s inequality and D 6MSF 6 OPT we have

R 6

√
3

3
D 6

√
3

3
·OPT,

i.e. D(G) 6 7
√
3

3 ·OPT .

In this case Min-2-SCCP instance can be enclosed into some
axis-aligned square S of size 7/

√
3 ·OPT
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PTAS sketch

Main idea

Randomized partitioning of the square S into smaller subsquares and
subsequent search for minimum 2-SCC of special kind

1) every inter-node segment of its cycles is piece-wise linear and
intersects all squares’ borders at special points (portals) only;

2) portals number and locations together with maximum number of
intersections (for each border) are defined in advance and depend
on accuracy parameter c;
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PTAS sketch

Rounded Min-2-SCCP

Definition

Instance of Min-2-SCCP is called rounded if

every vertex of the graph G has integral coordinates
xi, yi ∈ N0

O(n)

for any edge e, w(e) > 4

Lemma 3

PTAS for rounded Min-2-SCCP implies PTAS for Min-2-SCCP (in
the general case)
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PTAS sketch

Quad-trees for rounded Min-2-SCCP

Set up a regular 1-step axis-aligned grid on the square S with
side-length of L = O(n).

We are using the concept of quad-tree
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PTAS sketch

Quad-trees for rounded Min-2-SCCP

Root is the square S. For every square (including the root), make a
partition of the square into 4 child subsquares. Repeat it until all
child squares will contain no more than 1 node of the instance.
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PTAS sketch

Shifted Quad-tree

Definition

Suppose, a, b ∈ N0
L, we call the Quad-tree T (a, b) shifted Quad-tree, if

coordinates of its center is

((L/2 + a) mod L, (L/2 + b) mod L).

Child squares of T (a, b), as its center, is considered modulo L
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Structure Theorem

Definition

Consider fixed values m, r ∈ N.

For any square S, assign regular partition of its border, including
vertices of the square and consisting of 4(m+ 1) points.

Such a partition is called m-regular partition, and all its elements
— portals.
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Structure Theorem

Definitions

m-regular portal set

Union of m-regular partitions for all borders of not-a-leaf nodes of
Quadro-tree T (a, b) is called m-regular portal set. Denote it
P (a, b,m).

(m, r)-approximation

Suppose, π is a simple cycle in the Min-2-SCCP instance graph G (on
the plane), V (π) is its node-set. Closed piece-wise linear route l(π) is
called (m, r)-approximation (of the cycle π) if

1) node-set of the route l(π) is a some subset of V (π) ∪ P (a, b,m),

2) π and l(π) visit the nodes from V (π) in the same order,

3) for any square (being a node of T (a, b)), l(π) intersects its
arbitrary edge no more than r times, and exclusively in the
points of P (a, b,m).
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Structure Theorem

Once more definition

(k,m, r)-cycle cover

k-scc consisting of (m, r)-approximations is called (k,m, r)-cycle cover

Obviously, an arbitrary (1,m, r)-cycle cover contains the only
(m, r)-approximation which is a Hamiltonian cycle.
Let us consider (2,m, r)-cycle covers. . .
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Structure Theorem

Structure Theorem for Euclidean Min-2-SCCP

Theorem 4

Suppose c > 0 is fixed,

L is size of square S for a given instance of rounded 2-MHC.

Suppose discrete stochastic variables a, b are distributed uniformly
on the set N0

L.

Then for m = O(c logL) and r = O(c) with probability at least 1
2

there is (2,m, r)-cycle cover which weight is no more than
(1 + 1

c )OPT .
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Dynamic Programming

Dynamic Programming

(2,m, r, S)-segment

Let some (2,m, r)-cycle cover C and some node S of the tree T (a, b)
be chosen. A family of partial routes C ∩ S
is called (2,m, r, S)-segment (of the cover C).
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Dynamic Programming

Bellman equation

Task (S,R1, R2, κ)

Input.

Node S of the tree T (a, b).

Cortege Ri : Nqi → (P (a, b,m) ∩ ∂S)2 defines a sequence of the
start-finish pairs of portals (sij , t

i
j) which are crossing-points of

∂S by (m, r)-approximation li.

Number κ is equal to the number of cycles of the building
(2,m, r)-cycle cover, intersecting the interior of S.

Output minimum-cost (2,m, r, S)-segment.

Denote by W (S,R1, R2, κ) value of the task (S,R1, R2, κ).

W (S,R1, R2, κ) = min
τ

IV∑
i=I

W (Si, Ri1(τ), Ri2(τ), κi(τ)),
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Derandomization

Derandomization

Denote by APP (a, b) a weight of the approximate solution
constructed by DP for the tree T (a, b).

P

(
APP (a, b) 6 (1 +

1

c
)OPT

)
> 1/2,

Hence, there is a pair (a∗, b∗) ∈ N0
L, for which the equation

OPT 6 APP (a∗, b∗) 6 (1 + 1/c)OPT

is valid.

Theorem 5

Euclidean Min-2-SCCP has a Polynomial-Time Approximation
Scheme with complexity bound O(n3(log n)O(c)).
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Conclusion and Open Problems

The proposed PTAS seems to be easily extendable onto
Min-k-SCCP in d-dimensional Euclidean space

Due to well-known PCP theorem there is no PTAS for Metric
Min-k-SCCP. But, what about approximation threshold value for
this problem?
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Thank you for your attention!
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