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Deep network for Image Classification
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Deep network for Image Segmentation
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DeepLab-CRF
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-CRF results
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Weakly-Supervised Segmentation
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Multiple Instance Learning

g
1 LSE 9| cat
Overfeat : Segmentation Net £
C1-C2-C3-C4-Ch-Ch i C7-C8-Co-C10 2
LSE )
Imput: Overfeat Features: QOutput Features Map: LSE output:
I:%3 <h=<w H : @102 = h* = w YOl £ 1) %A xw® sl +1)=1x1

Figure credit: Pinheiro, CVPR15



Self-training (Deeplab)
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Self-training (Constrained CNN)
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SEC: overview

'
Semi-supervised

Weak localization}—— el
h’ ‘ Loss

Person WC ow lBackegr.

N Global . .
Segmentation] Weighted Classification
CNN Rank-Pooling Loss

Boundary-aware
Loss

Downscale %
’ 1

CRF




Outline

e Short introduction in semantic image segmentation
o fully-supervised learning
o weakly-supervised learning

e SEC: Seed, Expand and Constrain
o Localization loss (seed)
o Classification loss (expand)
o Boundary-aware loss (constrain)

e Evaluation and discussion



Classification
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Weak localization
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Bazzani, WACV16
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Localization loss

Weak localizationf—» . feml-sl-u perwsec>
0SS

Segmentation] « . f
CNN




Outline

e Short introduction in semantic image segmentation
o fully-supervised learning
o weakly-supervised learning

e SEC: Seed, Expand and Constrain
o Localization loss (seed)
o Classification loss (expand)
o Boundary-aware loss (constrain)

e Evaluation and discussion



Classification loss
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Global pooling strategies
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Global weighted rank-pooling
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Classification loss
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Boundary-aware loss
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Experimental setup

Dataset: PASCAL VOC 2012

e Three parts: train (10582), val (1449 )and test (1456)
e 20 semantic classes

Metric: Mean loU

Deep CNN: from Chen, ICLR2015

CRF: from Krahenbuhl, NIPS2011

Software: Caffe + Python with Theano

Hardwrare: GeForce TITAN-X

Optimization: SGD (8000 iterations, batch size 15)



- = —| = _ = =

= . facs e g g sk, g

PASCAL || @ | & 28| = | 2| & PASCAL || ' | == || &
/OC 2012 || = | = |EE Z =] ? A OC 2012 || O Z = % A
val set é - j}g = 32’.. o test set '3 Z ji o
= | X |Z2E SR | S | ¥ % =

P = \|E O | =+ = O (=t om
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bottle 24.27129.6|36.3|31.9 |[45.6 bottle 38.1(32.8|52.4
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average 32.27(33.6"|33.8|35.3| 36.6 |50.7 average 25.7| 35.6 |35.5|51.5

*
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Ablation study
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Pooling strategies

GWHP
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