The 12th International Conference on Intelligent Data Processing: Theory and Applications

October, 8 – 12th, 2018, Gaeta, Italy

Fast approximate two-class SVM learning in the case of a large number of objects

Makarova Alexandra, Sulimova Valentina

aleksarova@gmail.com, vsulimova@yandex.ru,

Russia, Tula State University Laboratory of Data Analysis

Two-class recognition problem

Mass sources of applied problems:

- molecular biology;
- medical systems;
- video surveillance systems;
- marketing;
- text analysis;
- biometric verification of personality;
- etc.

An important feature of modern applied recognition problems:

- large amounts of data that require processing

The formulation of the problem of learning two-class recognition

Given:

 $\Omega\;$ - the set of all possible objects $\;\;\omega\in\Omega\;$ of an arbitrary kind

The hidden function of class affiliation: $y(\omega): \Omega \rightarrow \{+1; -1\}$

Training set : { $(\omega_j, y_j), j = 1, ..., N$ }, $\omega_j \in \Omega^* \subset \Omega$, $y_j = y(\omega_j) \in \{+1; -1\}$

Required:

to build a decision rule for assigning any objects to one of two classes $\hat{y}(\omega) = \pm 1$

Support Vector Machine (SVM). Learning in a linear feature space

Representation of objects as points in *m*-dimensional feature space: $\mathbf{x}(\omega) \in \mathbf{R}^m$

Training set: $\{\mathbf{x}_j, y_j\}, \mathbf{x}_j = \mathbf{x}_j(\omega), j = 1,...,N$

The decision rule in the form of a linear separating hyperplane:

$$d(\mathbf{x};\mathbf{a},b) = \mathbf{a}^T \mathbf{x} + b \qquad \stackrel{\geq 0 \Rightarrow \hat{y}(\mathbf{x}) = +1,}{< 0 \Rightarrow \hat{y}(\mathbf{x}) = -1,} \qquad \begin{array}{l} \mathbf{a} \in R^m - \\ b - \text{offset} \end{array}$$

 $\mathbf{a} \in \mathbf{R}^m$ - direction vector b - offset along the direction vector

Parameters of the optimal hyperplane (*in terms of Lagrange multipliers*) $\lambda_j, j = 1, ..., N$:

$$\mathbf{a} = \sum_{j=1}^{N} \lambda_j y_j \mathbf{x}_j$$

$$b = \frac{1}{2} \left[\min_{j:y_j=1} \sum_{k=1}^{N} \lambda_k y_k \mathbf{x}_j^T \mathbf{x}_k - \max_{j:y_j=-1} \sum_{k=1}^{N} \lambda_k y_k \mathbf{x}_j^T \mathbf{x}_k \right]$$

Support Vector Machine (SVM). Learning in a space generated by the potential function

Potential function $K(\omega', \omega'')$ - function of object's similarities $\omega', \omega'' \in \Omega$, whose matrix of values is non-negatively defined for any finite set of objects.

 $K(\omega', \omega'')$ immerses set of objects Ω into a hypothetical linear space $\tilde{\Omega} \supset \Omega$ in which it plays the role of scalar product

The most popular potential function (radial): $K(\omega', \omega'') = \exp[-\gamma || \mathbf{x}(\omega') - \mathbf{x}(\omega'') ||^2]$

Decision rule:
$$d(\omega; \mathbf{a}, b) = \sum_{j=1}^{N} a_j K(\omega_j, \omega) + b$$

Parameters of the optimal hyperplane (*in terms of Lagrange multipliers*) $\lambda_j, j = 1, ..., N$:

$$\mathbf{a} = \sum_{j=1}^{N} \lambda_j y_j \mathbf{x}_j$$
$$b = \frac{1}{2} \left[\min_{j:y_j=1} \sum_{k=1}^{N} \lambda_k y_k K(\omega_j, \omega_k) - \max_{j:y_j=-1} \sum_{k=1}^{N} \lambda_k y_k K(\omega_j, \omega_k) \right]$$

Many approaches to solving the SVM problem

 Bottou L. (2004). Stochastic Learning. *Advanced Lectures on Machine Learning*, 146-168, Edited by Olivier Bousquet and Ulrike von Luxburg, Lecture Notes in Artificial Intelligence, LNAI 3176, Springer Verlag, Berlin, 2004.
Boser, B. E., Guyon, I. M., Vapnik, V. (1992). A Training Algorithm for Optimal Margin Classifiers, Fifth Annual Workshop on Computational Learning Theory, ACM, 1992

3. Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines (Technical Report MSR-TR-98-14). Microsoft Research.

4. Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

5. Joachims T.(1999) "Making large-scale support vector machine learning practical" in Advances in kernel methods: support vector learning. Cambridge, MA, USA: MIT Press, 1999, pp. 169–184

6.Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A. Y., & Olukotun, K. (2006). Map reduce for machine learning on multicore. NIPS

7. Zhao H. X., Magoules F. (2011). Parallel support vector machines on multi-core and multiprocessor systems. R. Fox. 11th International Conference on Arti_cial Intelligence and Applications (AIA 2011), Feb 2011, Innsbruck, Austria. IASTED, 2011, <10.2316/P.2011.717-056>

8. Graf, H. P., Cosatto, E., Bottou, L., Dourdanovic, I., & Vapnik, V. (2005). Parallel support vector machines: The cascade svm. In Advances in neural information processing systems 17, 521–528.

9. Hsieh C.-J., Dhillon S. Si, and I. S. (2013). A divide-and-conquer solver for kernel support vector machines. arXiv preprint arXiv:1311.0914, 2013.

10. Yang You, James Demmel, Kenneth Czechowski, Le Song and Richard Vuduc (2015). CA-SVM: Communication-Avoiding Parallel Support Vector Machines on Distributed Systems. EECS Department University of California, Berkeley Technical Report No. UCB/EECS-2015-9 February 27, 2015

11. A. Athanasopoulos, A. Dimou, V. Mezaris, I. Kompatsiaris, "GPU Acceleration for Support Vector Machines", Proc. 12th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2011), Delft, The Netherlands, April 2011

12. Carpenter, Austin. (2009). cuSVM: a CUDA implementation of support vector classification and regression.13. etc.

SVM open source implementations

	LibSVM	liblinear	mpi – libliear	SVMlight	SvmSgd	πSVM	CuSVM	GPU – accelerated LibSVM
Programming language	С	С	C+MPI	С	С	C+MPI	C+CUDA	C+CUDA
Interface	MATLAB, python, R, SciLAB, Java, Perl, Ruby и др.	MATLAB, python, R, SciLAB, Java, Perl, Ruby и др.	-		python	-	MATLAB	-
OS	cross – platform	cross – platform	Unix	cross – platform	cross – platform	Unix	Windows	cross – platform
Work in a linear feature space	+	+	•	+	+	+	+	+
Work in a space generated by the potential function	+	-	-	+	-	+	+	+
Work with sparse matrix	-	+	•	+	-	-	-	-
Work on 1 CPU	+	+	+	+	+	+	-	-
Work on several CPU	-	-	+	-	-	+	-	-
Work on GPU	-	-	-	-	-	-	+	+
Software hardware dependency	-	-	+	-	-	+	+	+
Iterative process	+	+	+	+	+	+	+	+

Objective

The study of the basic opportunity of creating an approximate method for solving the SVM problem in the case of a large number of objects, which at the same time is:

- fast,

- economical in memory (to enable work on a single computer),

and has **a high degree of parallelism** (for the organization of high-performance computing for systems with shared and distributed memory).

Further research will be aimed at developing a version of the proposed algorithm in the space generated by the potential function.

Proposed method of fast approximate solution of the SVM problem

Initial training set: [X,Y],
$$X = [\mathbf{x}_j, j = 1,...,N], \quad \mathbf{x}_j \in \mathbb{R}^m$$

 $Y = [y_j, j = 1,...,N], \quad y_j \in \{-1;1\}$

Set of random subsamples from the training set: $[X,Y]^{(i)} \in [X,Y], i = 1,...,k$

The result of training for the i^{th} subsample: $[X,Y]^{(i)}$

$$[\mathbf{a}^{(i)}, b^{(i)}], \quad i = 1, ..., k$$

Averaged decision rule: $[\mathbf{a}, b], \quad \mathbf{a} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{a}^{(i)}, \quad b = \frac{1}{k} \sum_{i=1}^{k} b^{(i)}$

Justification:

 $[\mathbf{a}^{(i)}, b^{(i)}], \quad i = 1, ..., k$ - random variables with characteristics m and variance dThen $[\mathbf{a}, b]$ - random variables with characteristics $M[\mathbf{a}, b] = m$ and $D[\mathbf{a}, b] = \frac{d}{k}$

According to the law of large numbers, the averaged estimate of the parameters of the decision rule converges by probabilities to the mathematical expectation of the corresponding random variable:

$$\lim_{k\to\infty} P\left\{ \left| \frac{1}{k} \sum_{i=1}^{k} [\mathbf{a}^{(i)}, b^{(i)}] - m \right| < \varepsilon \right\} = 1$$

Consequently, with an increasing number of subsamples the averaged decision rule stabilizes and, in the limit, ceases to be a random variable.

Position change of the averaged hyperplane in number change of subsamples

display of the sample generated for the two-dimensional case (300 objects of each class, degree of mixing of classes c = 0.8) and decision rules that divided into random intersecting subsamples

Sequential algorithm for fast, approximate solution of the SVM problem

Computational scheme of the proposed approach

The model of parallel computing in the form of a graph of operation-operands **for an infinite number of processes** (vertices are operations, edges are data connections).

Computational scheme of the proposed approach

The model of parallel computing in the form of a graph of operation-operands **for** *p* **processes** (vertices are operations, edges are data connections).

Model data generation in accordance with the probabilistic model of SVM*

^{*} A. Tatarchuk Bayesian support vector machine for learning pattern recognition with controlled selectivity of feature selection. Thesis of Ph.D. n Computing Center RAS, 2014

Experimental results for the model data

Number of subsamples: 50 - 5000 in increments of 50; subsample size: 50

	SVMli (C	ight*)	libSV (C	'M*)	SVC (LibS pyth	C** SVM, 10n)	πSV (1 pro	'M* ocess)	liblin ((near* C)	linear- (Libli pytl	SVC** inear, hon)	M liblin (1 pr	PI - 1ear* ocess)	SG (py	D** thon)	pro met	posed hod**
	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-
	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy
							-	ijc	nn1									
train	12,41	0.017	22,193	0.017	40,4	0.017	13,99	0.017	0,16	0.013	0,9151	0 0164	0,45	0.013	9,89	0.905	0,412	0.0147
test	0,0267	0,917	21,146	0,917	25,72	0,917	24,67	0,917	0,34	0,913	0,02	0,9104	0,09	0,913	0,01	0,903	0,004	0,9147
								mnis	t_576									
train	51,26	0.004	512,736	0.004	499,8	0.004	95,41	0.004	2,17	0.080	4,5533	0.0025	4,73	0.002	0,51	0.002	5,74	0.097
test	0,0067	0,994	30,506	0,994	44,08	0,994	35,12	0,994	1,03	0,989	0,0156	0,9935	1,09	0,992	0,02	0,903	0,005	0,987
			_					mnis	st_784									
train	39,916	0.967	838,573	0.967	717,7	0.967	450,52	0.967	2,49	0.048	5,5304	0.9672	5,37	0.048	0,77	0.003	5,65	0.945
test	0,03	0,907	64,767	0,907	50,13	0,907	68,45	0,907	1,27	0,940	0,0156	0,9072	1,32	0,948	0,03	0,903	0,005	0,943
								covty	pe_2vr									
train	>40000	-	>180000		>3600	_	>40000	_	36,39	0.755	238,44	0 545	0,79	0.612	185	0 505	987	0 6347
test	-		-	_	-		-		0,69	0,755	0,1718	0.515	0,8	0,012	0,17	0,505	0,013	0,0517
			-				ijcnn1	L (with s	tandard	ization)								
train	197,21	0.957	200,8	0.957	122,5	0.917	25,96	0.930	0,14	0.602	5,486	0.916	0,08	0.602	7,44	0.905	2,11	0 9232
test	102,73	0,557	82,1	0,557	1,13	0,517	108,78	0,550	0,59	0,002	0,018	0,510	0,58	0,002	0,03	0,505	0,003	0,5252
							mnist_5	76 (with	n standa	rdizatio	n)							
train	33072,2	0.903	31946,4	0.992	>3600	_	144,98	0 999	73,09	0.822	32,067	0 9905	36,95	0.822	118	0 988	5,31	0 9879
test	1189,63	0,903	16,27	0,772	-		52,115	0,555	1,57	0,022	0,047	0,5505	1,57	0,022	0,03	0,500	0,004	0,5075
			-				mnist_7	84 (with	n standa	rdizatio	n)				-			
train	31083,3	0.903	19446,2	0.903	>3600	_	483,86	0.995	13,98	0.678	62,699	0.9458	13,26	0.679	83,8	0.947	6,256	0.9637
test	1039,41	0,200	730,48	0,705	-		82,088	0,000	1,32	0,070	0,0312	0,5450	1,3	0,075	0,02	170,00	0,006	0,5057
	covtype_2vr (with standardi					lardizati	on)											
train	>40000	_	>180000		>3600	_	>40000	_	2,72	0.756	157,99	0 7561	2,47	0.754	130	0.693	11,61	0 7534
test	-	_	-	-	-	_	-	_	4,24	0,750	0,0937	0,7501	4,29	0,754	0,08	0,033	0,02	0,7554

Data description

Set	Objects on train	Objects on recognition	Number of features
ijcnn1	35000	91701	22
mnist-576-rbf-8vr	60000	10000	576
mnist-784-poly-8vr	60000	10000	784
covtype-2vr	300000	281012	54

Characteristics of CS

	SVMI (C	ight*)	libSV (C	/M*)	SVO (LibS pyth	C** SVM, 10n)	πSV (1 pro	M* ocess)	liblin ((1ear* C)	linear- (Libli pytl	SVC** inear, hon)	M liblin (1 pr	PI - near* ocess)	SG (py	D** thon)	pro met	posed hod**
	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-
	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy
								ijc	nn1									
train	12,41	0 917	22,193	0.917	40,4	0.917	13,99	0.917	0,16	0.913	0,9151	0 9164	0,45	0.913	9,89	0.905	0,412	0 9147
test	0,0267	0,517	21,146	0,517	25,72	0,217	24,67	0,517	0,34	0,515	0,02	0,5101	0,09	0,510	0,01	0,505	0,004	0,5117
								mnis	t_576									
train	51,26	0.004	512,736	0.004	499,8	0.004	95,41	0.004	2,17	0.000	4,5533	0.0005	4,73	0.000	0,51	0.000	5,74	0.007
test	0,0067	0,994	30,506	0,994	44,08	0,994	35,12	0,994	1,03	0,989	0,0156	0,9935	1,09	0,992	0,02	0,903	0,005	0,987
								mnis	st_784									
train	39,916	0.067	838,573	0.067	717,7	0.067	450,52	0.067	2,49	0.049	5,5304	0.0672	5,37	0.049	0,77	0.002	5,65	0.045
test	0,03	0,967	64,767	0,967	50,13	0,967	68,45	0,967	1,27	0,948	0,0156	0,9072	1,32	0,948	0,03	0,903	0,005	0,945
	_		_		_			covty	pe_2vr		_		-					
train	>40000	_	>180000		>3600		>40000		36,39	0.755	238,44	0.545	0,79	0.612	185	0 505	987	0.6347
test	-		-	-	-		-		0,69	0,755	0,1718	0.545	0,8	0,012	0,17	0,505	0,013	0,0347
							ijcnn1	l (with s	tandard	ization)								
train	197,21	0.957	200,8	0.957	122,5	0.017	25,96	0.030	0,14	0.602	5,486	0.016	0,08	0.602	7,44	0.905	2,11	0 0 2 3 2
test	102,73	0,957	82,1	0,957	1,13	0,917	108,78	0,950	0,59	0,002	0,018	0,910	0,58	0,002	0,03	0,905	0,003	0,9232
	_						mnist_5	76 (with	n standa	rdizatio	n)							
train	33072,2	0.003	31946,4	0.002	>3600		144,98	0 000	73,09	0.822	32,067	0 0005	36,95	0.822	118	0.099	5,31	0.0870
test	1189,63	0,903	16,27	0,992	-	_	52,115	0,999	1,57	0,822	0,047	0,9903	1,57	0,822	0,03	0,988	0,004	0,9879
							mnist_7	84 (with	n standa	rdizatio	n)							
train	31083,3	0.003	19446,2	0.003	>3600		483,86	0.005	13,98	0.678	62,699	0.0458	13,26	0.670	83,8	0.047	6,256	0.0627
test	1039,41	5,905	730,48	0,905	-	_	82,088	0,225	1,32	5,078	0,0312	0,5430	1,3	0,079	0,02	5,547	0,006	0,9037
							covtype_	2vr (wi	th stand	ardizati	on)							
train	>40000		>180000		>3600		>40000		2,72	0.756	157,99	0.7561	2,47	0.754	130	0.692	11,61	0.7534
test	-	-	-	-	-	-	-	-	4,24	0,750	0,0937	0,7501	4,29	0,754	0,08	0,055	0,02	0,7554

Data description

Set	Objects on train	Objects on recognition	Number of features
ijenn1	35000	91701	22
mnist-576-rbf-8vr	60000	10000	576
mnist-784-poly-8vr	60000	10000	784
covtype-2vr	300000	281012	54

Characteristics of CS

	SVMI (C	ight*)	libSV (C	/M*)	SVO (LibS pytł	C** SVM, 10n)	πSV (1 pro	M* ocess)	liblin ((near* C)	linear- (Libli pytl	SVC** inear, 10n)	MI liblin (1 pr	PI - 1ear* ocess)	SG (pyt	D** thon)	pro met	posed hod**
	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-
	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy
								ijc	nn1									
train	12,41	0 917	22,193	0.917	40,4	0.917	13,99	0.917	0,16	0.913	0,9151	0 9164	0,45	0.913	9,89	0.905	0,412	0 9147
test	0,0267	0,517	21,146	0,517	25,72	0,517	24,67	0,517	0,34	0,515	0,02	0,5104	0,09	0,515	0,01	0,505	0,004	0,5147
	•							mnis	t_576									
train	51,26	0.004	512,736	0.004	499,8	0.004	95,41	0.004	2,17	0.000	4,5533	0.0005	4,73	0.000	0,51	0.000	5,74	0.007
test	0,0067	0,994	30,506	0,994	44,08	0,994	35,12	0,994	1,03	0,989	0,0156	0,9935	1,09	0,992	0,02	0,903	0,005	0,987
								mnis	st_784									
train	39,916	0.067	838,573	0.067	717,7	0.067	450,52	0.067	2,49	0.049	5,5304	0.0672	5,37	0.049	0,77	0.002	5,65	0.045
test	0,03	0,907	64,767	0,907	50,13	0,907	68,45	0,907	1,27	0,940	0,0156	0,9072	1,32	0,946	0,03	0,903	0,005	0,943
	covtype_2vr																	
train	>40000	-	>180000		>3600	_	>40000	_	36,39	0.755	238,44	0 545	0,79	0.612	185	0.505	987	0.6347
test	-		-	-	-		-		0,69	0,755	0,1718	0.545	0,8	0,012	0,17	0,505	0,013	0,0347
							ijcnn1	(with s	tandard	ization)								
train	197,21	0.057	200,8	0.057	122,5	0.017	25,96	0.030	0,14	0.602	5,486	0.016	0,08	0.602	7,44	0.005	2,11	0 0 2 2 2
test	102,73	0,257	82,1	0,257	1,13	0,517	108,78	0,250	0,59	0,002	0,018	0,510	0,58	0,002	0,03	0,505	0,003	0,5252
	-						mnist_5	76 (with	n standa	rdizatio	n)							
train	33072,2	0 003	31946,4	0.002	>3600	_	144,98	0 000	73,09	0.822	32,067	0 0005	36,95	0.822	118	0.088	5,31	0 9879
test	1189,63	0,903	16,27	0,552	-		52,115	0,777	1,57	0,022	0,047	0,5505	1,57	0,022	0,03	0,500	0,004	0,5075
							mnist_7	84 (with	n standa	rdizatio	n)				-			
train	31083,3	0.003	19446,2	0.003	>3600		483,86	0.005	13,98	0.678	62,699	0.0459	13,26	0.670	83,8	0.047	6,256	0.0627
test	1039,41	0,903	730,48	0,903	-	_	82,088	0,225	1,32	0,078	0,0312	0,5430	1,3	0,079	0,02	5,547	0,006	0,9037
	covtype_2vr (with standard						ardizati	on)										
train	>40000	_	>180000		>3600		>40000		2,72	0.756	157,99	0 7561	2,47	0.754	130	0.602	11,61	0 7534
test	-	-	-	-	-	-	-	_	4,24	0,750	0,0937	0,7501	4,29	0,754	0,08	0,055	0,02	0,7554

Data description

Set	Objects on train	Objects on recognition	Number of features
ijcnn1	35000	91701	22
mnist-576-rbf-8vr	60000	10000	576
mnist-784-poly-8vr	60000	10000	784
covtype-2vr	300000	281012	54

Characteristics of CS

	SVMI (C	ight*)	libSV (C	'M*)	SVC (LibS pyth	C** SVM, 10n)	πSV (1 pro	M* ocess)	liblin ((near* C)	linear- (Libli pytl	SVC** inear, 10n)	M liblin (1 pre	PI - 1ear* ocess)	SG (pyt	D** thon)	pro met	posed hod**
	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-
	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy
								ijc	nn1									
train	12,41	0 917	22,193	0.917	40,4	0.917	13,99	0.917	0,16	0.913	0,9151	0 9164	0,45	0 913	9,89	0 905	0,412	0 9147
test	0,0267	0,517	21,146	0,517	25,72	0,517	24,67	0,517	0,34	0,515	0,02	0,5101	0,09	0,515	0,01	0,505	0,004	0,5117
								mnis	t_576									
train	51,26	0.004	512,736	0.004	499,8	0.004	95,41	0.004	2,17	0.080	4,5533	0.0025	4,73	0.002	0,51	0.002	5,74	0.097
test	0,0067	0,994	30,506	0,994	44,08	0,994	35,12	0,994	1,03	0,989	0,0156	0,9955	1,09	0,992	0,02	0,903	0,005	0,967
								mnis	st_784		_							
train	39,916	0.967	838,573	0.967	717,7	0.967	450,52	0.967	2,49	0.048	5,5304	0.9672	5,37	0.048	0,77	0 003	5,65	0.045
test	0,03	0,907	64,767	0,907	50,13	0,907	68,45	0,907	1,27	0,948	0,0156	0,9072	1,32	0,940	0,03	0,903	0,005	0,943
	covtype_2vr																	
train	>40000	_	>180000	_	>3600	_	>40000	_	36,39	0.755	238,44	0 545	0,79	0.612	185	0 505	987	0 6347
test	-		-	-	-		-		0,69	0,755	0,1718	0.545	0,8	0,012	0,17	0,505	0,013	0,0347
							ijcnn1	(with s	tandard	ization)								
train	197,21	0.957	200,8	0.957	122,5	0.917	25,96	0.930	0,14	0.602	5,486	0.916	0,08	0.602	7,44	0 905	2,11	0 9232
test	102,73	0,557	82,1	0,557	1,13	0,517	108,78	0,550	0,59	0,002	0,018	0,510	0,58	0,002	0,03	0,505	0,003	0,5252
							mnist_5	76 (with	n standa	rdizatio	n)							
train	33072,2	0.003	31946,4	0.002	>3600	_	144,98	0 000	73,09	0.822	32,067	0 0005	36,95	0.822	118	0 088	5,31	0 9879
test	1189,63	0,203	16,27	0,772	-		52,115	0,555	1,57	0,022	0,047	0,5505	1,57	0,022	0,03	0,500	0,004	0,5075
							mnist_7	84 (with	n standa	rdizatio	n)							
train	31083,3	0.003	19446,2	0.003	>3600	_	483,86	0.005	13,98	0.678	62,699	0.0/58	13,26	0.679	83,8	0 9/17	6,256	0.9637
test	1039,41	0,203	730,48	0,203	-	_	82,088	0,225	1,32	0,078	0,0312	0,5430	1,3	0,079	0,02	0,547	0,006	0,9037
	covtype_2vr (with standard							lardizati	on)									
train	>40000		>180000		>3600		>40000		2,72	0.756	157,99	0 7561	2,47	0.754	130	0 603	11,61	0 7534
test	-	-	-	-	-	-	-	_	4,24	0,750	0,0937	0,7501	4,29	0,754	0,08	0,095	0,02	0,7554

Data description

Set	Objects on train	Objects on recognition	Number of features
ijcnn1	35000	91701	22
mnist-576-rbf-8vr	60000	10000	576
mnist-784-poly-8vr	60000	10000	784
covtype-2vr	300000	281012	54

Characteristics of CS

	SVMI (C	ight*)	libSV (C	/M*)	SVO (LibS pytł	C** SVM, 10n)	πSV (1 pro	M* ocess)	liblin ((near* C)	linear- (Libli pytl	SVC** inear, 10n)	M liblin (1 pr	PI - 1ear* ocess)	SG (py	D** thon)	pro met	posed hod**
	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-
	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy
							-	ijc	nn1						-			
train	12,41	0.017	22,193	0.017	40,4	0.017	13,99	0.017	0,16	0.012	0,9151	0.0164	0,45	0.012	9,89	0.005	0,412	0.01/17
test	0,0267	0,917	21,146	0,917	25,72	0,917	24,67	0,917	0,34	0,915	0,02	0,9104	0,09	0,915	0,01	0,903	0,004	0,9147
								mnis	t_576									
train	51,26	0.004	512,736	0.004	499,8	0.004	95,41	0.004	2,17	0.080	4,5533	0.0025	4,73	0.002	0,51	0.002	5,74	0.097
test	0,0067	0,994	30,506	0,994	44,08	0,994	35,12	0,994	1,03	0,989	0,0156	0,9935	1,09	0,992	0,02	0,903	0,005	0,987
	_							mnis	st_784									
train	39,916	0.967	838,573	0.967	717,7	0.967	450,52	0.967	2,49	0.048	5,5304	0.9672	5,37	0.048	0,77	0.003	5,65	0.045
test	0,03	0,907	64,767	0,907	50,13	0,907	68,45	0,907	1,27	0,940	0,0156	0,9072	1,32	0,948	0,03	0,903	0,005	0,943
								covty	pe_2vr									
train	>40000	_	>180000		>3600	_	>40000	_	36,39	0.755	238,44	0 545	0,79	0.612	185	0 505	987	0 6347
test	-		-	_	-		-		0,69	0,755	0,1718	0.515	0,8	0,012	0,17	0,505	0,013	0,0317
							ijcnn1	L (with s	tandard	ization)								
train	197,21	0.957	200,8	0.957	122,5	0.917	25,96	0.930	0,14	0.602	5,486	0.916	0,08	0.602	7,44	0 905	2,11	0 9232
test	102,73	0,207	82,1	0,207	1,13	0,517	108,78	0,200	0,59	0,002	0,018	0,510	0,58	0,002	0,03	0,505	0,003	0,5252
	-						mnist_5	76 (with	n standa	rdizatio	on)							
train	33072,2	0.903	31946,4	0.992	>3600	_	144,98	0 999	73,09	0.822	32,067	0 9905	36,95	0.822	118	0 988	5,31	0 9879
test	1189,63	0,200	16,27	0,772	-		52,115	0,555	1,57	0,022	0,047	0,5505	1,57	0,022	0,03	0,500	0,004	0,5075
							mnist_7	84 (with	n standa	rdizatio	on)							
train	31083,3	0.903	19446,2	0.903	>3600	_	483,86	0.995	13,98	0.678	62,699	0 9458	13,26	0.679	83,8	0.947	6,256	0 9637
test	1039,41	0,900	730,48	0,705	-		82,088	0,000	1,32	0,070	0,0312	0,5450	1,3	0,075	0,02	170,00	0,006	0,5057
	covtype_2vr (with sta						2vr (with standardization)											
train	>40000	_	>180000		>3600	_	>40000	_	2,72	0.756	157,99	0 7561	2,47	0.754	130	0.693	11,61	0 7534
test	-	_	-	-	-	_	-	_	4,24	0,750	0,0937	0,7501	4,29	0,754	0,08	0,033	0,02	0,7554

Data description

Set	Objects on train	Objects on recognition	Number of features
ijenn1	35000	91701	22
mnist-576-rbf-8vr	60000	10000	576
mnist-784-poly-8vr	60000	10000	784
covtype-2vr	300000	281012	54

Characteristics of CS

	SVMIi (C	ight*)	libSV (C	/M*)	SVC (LibS pyth	C** SVM, 10n)	πSV (1 pro	M* ocess)	liblin ((near* C)	linear- (Libli pytl	SVC** inear, 10n)	M liblin (1 pre	PI - 1ear* ocess)	SG (py	D** thon)	pro met	posed hod**
	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-	time	accu-
	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy	(s)	racy
							-	ijc	nn1									
train	12,41	0.017	22,193	0.017	40,4	0.017	13,99	0.017	0,16	0.012	0,9151	0.0164	0,45	0.012	9,89	0.005	0,412	0.0147
test	0,0267	0,917	21,146	0,917	25,72	0,917	24,67	0,917	0,34	0,915	0,02	0,9104	0,09	0,915	0,01	0,903	0,004	0,9147
								mnis	t_576									
train	51,26	0.004	512,736	0.004	499,8	0.004	95,41	0.004	2,17	0.000	4,5533	0.0025	4,73	0.000	0,51	0.002	5,74	0.097
test	0,0067	0,994	30,506	0,994	44,08	0,994	35,12	0,994	1,03	0,989	0,0156	0,9935	1,09	0,992	0,02	0,903	0,005	0,987
								mnis	st_784									
train	39,916	0.067	838,573	0.067	717,7	0.067	450,52	0.067	2,49	0.049	5,5304	0.0672	5,37	0.049	0,77	0.002	5,65	0.045
test	0,03	0,907	64,767	0,907	50,13	0,907	68,45	0,907	1,27	0,940	0,0156		1,32		0,03	0,903	0,005	0,943
	covtype_2vr																	
train	>40000	_	>180000		>3600	_	>40000	_	36,39	0.755	238,44	0 545	0,79	0.612	185	0.505	987	0.6347
test	-		-	-	-		-		0,69	0,755	0,1718	0.545	0,8	0,012	0,17	0,505	0,013	0,0347
							ijcnn1	(with s	tandard	ization)								
train	197,21	0.957	200,8	0.957	122,5	0.017	25,96	0.030	0,14	0.602	5,486	0.016	0,08	0.602	7,44	0.905	2,11	0 0 2 3 2
test	102,73	0,237	82,1	0,257	1,13	0,517	108,78	0,250	0,59	0,002	0,018	0,510	0,58	0,002	0,03	0,505	0,003	0,5252
							mnist_5	76 (with	n standa	rdizatio	on)							
train	33072,2	0.903	31946,4	0.992	>3600	_	144,98	0 999	73,09	0.822	32,067	0 9905	36,95	0.822	118	0.988	5,31	0 9879
test	1189,63	0,205	16,27	0,552	-		52,115	0,777	1,57	0,022	0,047	0,5505	1,57	0,022	0,03	0,500	0,004	0,5075
						mnist_784 (with standardization)												
train	31083,3	0 003	19446,2	0.003	>3600	_	483,86	0.005	13,98	0.678	62,699	0.0/58	13,26	0.679	83,8	0.047	6,256	0.9637
test	1039,41	0,705	730,48	0,905	-		82,088	0,775	1,32	0,070	0,0312	0,5450	1,3	0,075	0,02	0,547	0,006	0,5057
			-				covtype_	2vr (wi	th stand	lardizati	on)							
train	>40000		>180000		>3600		>40000		2,72	0.756	157,99	0 7561	2,47	0.754	130	0.602	11,61	0.7534
test	-	-	-	-	-	-	-	-	4,24	0,750	0,0937	0,7501	4,29	0,754	0,08	0,095	0,02	0,7554

Data description

Set	Objects on train	Objects on recognition	Number of features
ijenn1	35000	91701	22
mnist-576-rbf-8vr	60000	10000	576
mnist-784-poly-8vr	60000	10000	784
covtype-2vr	300000	281012	54

Characteristics of CS

Thank you for your attention!