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Two-class recognition problem

Mass sources of applied problems: 

- molecular biology; 

- medical systems; 

- video surveillance systems; 

- marketing; 

- text analysis; 

- biometric verification of personality; 

- etc. 

An important feature of modern applied 

recognition problems: 

- large amounts of data that require  

processing



The formulation of the problem of learning two-class recognition

The hidden function of class affiliation:

- the set of all possible objects of an arbitrary kind
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to build a decision rule for assigning any objects to one of two classes



Support Vector Machine (SVM).
Learning in a linear feature space

Representation of objects as points in m-dimensional feature space: 

Training set:
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The decision rule in the form of a linear separating hyperplane:

ˆ0 ( ) 1,
( ; , )

ˆ0 ( ) 1,
T y

d b b
y

x
x a a x

x
- direction vector

mRa
b - offset along the direction vector

1

N

j j jj
ya x

Parameters of the optimal hyperplane

(in terms of Lagrange multipliers) , 1,..., :j j N

1 1: 1 : 1

1
min max

2 j j

N NT T

k k j k k k j kk kj y j y

b y yx x x x



Support Vector Machine (SVM).
Learning in a space generated by the potential function

The most popular potential function (radial):

Decision rule:

Potential function ( , )K , ,- function of object’s similarities

whose matrix of values is non-negatively defined for any finite set of objects.

immerses set of objects( , )K into a hypothetical linear space

in which it plays the role of scalar product
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SVM open source implementations



Objective

The study of the basic opportunity of creating an approximate method for solving the

SVM problem in the case of a large number of objects, which at the same time is:

- fast,

- economical in memory (to enable work on a single computer),

and has a high degree of parallelism (for the organization of high-performance

computing for systems with shared and distributed memory).

Further research will be aimed at developing a version of the proposed algorithm in

the space generated by the potential function.



Proposed method of fast approximate solution of the SVM problem
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According to the law of large numbers, the averaged estimate of the parameters of the decision rule 

converges by probabilities to the mathematical expectation of the corresponding random variable:

( )[ , ] iX Y

Justification: 

( ) ( )[ , ], 1,...,i ib i ka - random variables with characteristics m and variance d
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aThen [ , ]M b ma and[ , ]ba - random variables with characteristics

Consequently, with an increasing number of subsamples the averaged decision rule stabilizes and, in 

the limit, ceases to be a random variable.



Position change of the averaged hyperplane 
in number change of subsamples

number of subsamples = 10 number of subsamples = 100

display of the sample generated for the two-dimensional case (300 objects of each class, degree of mixing of classes c = 0.8) 

and decision rules that divided into random intersecting subsamples

original rule

+1 object’s class

-1 object’s class

average rule

original rule

+1 object’s class

-1 object’s class

average rule

number of subsamples = 1000

original rule

+1 object’s class

-1 object’s class

average rule

number of subsamples = 2000

original rule

+1 object’s class

-1 object’s class

average rule



Generation of the i-th subsample of size 

ss_size with a matrix of attributes 

and class labels

end

begin

1 Training in k subsamples

Input parameters: X - matrix of features; Y - class labels {-1,1}; k is 

the number of subsamples; ss_size - subsample size

Brute k subsamples
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using any SVM implementation
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Averaging decision rules

Sequential algorithm 
for fast, approximate solution of the SVM problem
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Computational scheme of the proposed approach

The model of parallel computing in the form of a graph of operation-operands

for an infinite number of processes (vertices are operations, edges are data connections).

XY – training set

k – number of subsamples

ss_size – size of each subsample

С – penalty



The model of parallel computing in the form of a graph of operation-operands

for p processes (vertices are operations, edges are data connections).
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Computational scheme of the proposed approach

XY – training set

k – number of subsamples

ss_size – size of each subsample

С – penalty



Model data generation
in accordance with the probabilistic model of SVM*
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* A. Tatarchuk Bayesian support vector machine for learning pattern recognition with controlled selectivity of feature 

selection. Thesis of Ph.D. n Computing Center RAS, 2014



Experimental results for the model data

Comparison of the proposed method (blue)

with the SGD method (black); liblinear (pink); libSVM (red).

Number of subsamples: 50 - 5000 in increments of 50; subsample size: 50
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Results of testing on real data 

Data description Characteristics of CS

*The supercomputer complex of MSU “Lomonosov”: 

1 node: Intel Xeon X5570 (2.93 GHz),  8  core, 

8Gb RAM, node: 5104

** PC: Intel® Core™ i5-4210U (2.4GHz), 2 core,

6Gb RAM
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Thank you for your attention!


