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Pattern recognition and Regression:
Two particular cases of Dependence estimation

The generalized scenario:
X e R" — real-world objects observable
through real-valued features

y=f(x):R" — Y — the unknown dependence that exists if reality

y € Y —a hidden property of each object

{(X;,¥;), i =1,...,N| —the set of precedents (training set)
=f(x) R">Y —itis requwed to generate a decision rule applicable to each x e R"
Y~y (to approximately restore the dependence)
If Y=R this is regression estimation y=f(X):R" >R

If Y={-1,1} thisis two-class pattern recognition y= f(x):R" —{-1,1}

Generalized Linear Model (GLM) of the hidden dependence
John Nelder. Generalized Linear Models. Journal of the Royal Statistical Society.
Series A, Vol. 135, Issue 3, 1972, pp. 370-384.

z(X|a,b)=a'x+b:R">R the generalized linear model of the dependence
Parameters of the model:  aeR" — direction vector, beR — bias
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The Generalized Linear Model (GLM) of the dependence

{z(xl a,b)=a’x+b:R">R generalized linear feature of the entity represented
by its initial feature vector xeR"
q(y,z): Y xR —>R” link function, convex in zeR for any yeY
y(x|a,b) =arg r\yin q(y, z(x|a,b))  decision rule
ye




The Generalized Linear Model (GLM) of the dependence

z(x|a,b)=a"x+b: R"> R generalized linear feature of thenentlty represented
by its initial feature vector xeRR

q(y,z): Y xR —>R” link function, convex in zeR for any yeY
§(x|a,b) =argminq(y, z(x|a,b)) |decision rule
yeY

Particular cases

Regression Y =R Two-class pattern recognition Y ={-1,1}
q(y,z)=(y-2)>:RxR > R* ZIi%r_rc1)oq(y=+1, Z) = o, !ilpoq(y=+1, z) =0,
limqg(y=-12)=0, limq(y=-1 z)=c.

q(y, z)

y=1]9(y.2)
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Logistic Regression
q(y,z) =In[1+exp(-yz)]



The Generalized Linear Model (GLM) of the dependence

z(X|a,b)=a'x+b:R">R
q(y,2): YxR > R"

generalized linear feature of the entity represented
by its initial feature vector xeR"

link function, convex in zeRR forany yeY

y(x|a,b) =argminq(y, z(x|a,b))
yeY

decision rule

Particular cases

Regression Y =R

Two-class pattern recognition Y ={-1,1}

q(y,z)=(y-2)>:RxR > R*

lim q(y=+1 2z)=00, limq(y=+12)=0,
limqg(y=-12)=0, limq(y=-1 z)=c.

q(y, z)

Support Vector Machine (SVM)
q(y,z)=max(0, 1-yz)
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The commonly adopted principle of learning from precedents:

Reqgularized empirical risk minimization
Set of precedents (training set): {(x;,y;), j =1.... N}

It is required to choose two parameters (aeR”,beR) of the linear model

Criterion: Minimization of the loss within the bounds of the training set

N . . |empirical risk in the training set,
EmpR(a,b)= q(y;,a x;+b)—>min |instead of the average risk over
j=1 “all the feasible™ real-world entities

However, if n> N, there exist a continuum of minimum points (a,b)eR"".
Regularized empirical risk minimization — finding the shortest vector among them

the simplest ridge regularization,

N
J(a,b):YaTa‘l‘zCI(yj’aTXj+b)_)min(aeRn’b€R) 0<Y<<1’ i_e_’ 'Y—)O

j=1
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J(a,b|M)=VZ£ ttl |2| | LlJWLZCI(Y,-,<':1TX,-+b)—>mlﬂ selective ridge
Stanlal>p) regularization
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Set of precedents (training set): {(x;,y;), j =1.... N}
It is required to choose two parameters (aeR”,beR) of the linear model
Criterion: Minimization of the loss within the bounds of the training set

N . . |empirical risk in the training set,
EmpR(a,b)= q(y;,a x;+b)—>min |instead of the average risk over
j=1 “all the feasible” real-world entities

However, if n> N, there exist a continuum of minimum points (a,b)eR"".
Regularized empirical risk minimization — finding the shortest vector among them

N . i the simplest ridge regularization,
J(ab)=ya"a+) q(y;, a"x+b)>min(acR",beR) 0<y<<p1 . gy e

j=1 ! Ny
1 2ulal, |alg N :
J(a,b|M)=VZ£ ttl 'lz | LljﬂLZCI(yj,c?lTX,- +b) —>min selective ridge
Stanlal>p) regularization
Selectivity parameter O<u<oco. As u grows, the penalty p|a| drives to zero the
coefficients at redundant features, which weakly contribute to diminishing of the
empirical risk.

Result of optimization — a small subset of active features: I(u) = {i:a#0} c{1...,n}

a more sophisticated
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Selective regularized empirical risk minimization

2ulal, l[al<p) < : .
J(a,blp)= VZ(“ 24 a2 a> +§q(yj,aij+b)—>m|n. In scalar form:

2u |a| al<p _ pro_ble_m qf convex
J(@a,...,a ,blp)= VZ( j+2q(yj Za,xJ,er)—)mln optimization with

Wl labp) 45 (n+1) variables
What will be interesting to us is the computational complexity of dependence estimation
In the general case, the computational complexity is polynomial relative to n.

In practice, the number of features is often much greater than the training set size n>N
If n is large, the polynomial computational complexity relative to n is inadmissible.

We are going to prove that this is not the case for dependence estimation.

The computational complexity will be polynomial with respect to N and linear to n.
To show this, it is enough to put the problem of selective regularized empirical risk
minimization in the so- called disjoint form:

(& (2ulal, Jal<p
i N 2 )—>min oz Such a disjoint
VZ(“ZJraZ E Jz_llq(yl 2 (@, e Zuli) writing allows for a

dual formulation of
Z] —Za. it J=1..,N. the problem

N
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The dual formulation and numerical solution
of the disjoint empirical risk minimization problem

(YZn: “lal [al<n +ZN:q(y. z.)>min(a,,....a_,b,z,,...z, |p), disjointwriting
) u'+af, |a> = T eNEEA of the empirical

. . _ risk minimization
Z; = Zaix. +b, J=1,...,N, Lagrange multipliers A ;; problem

Ji

L iI=1 . . .
n —number of features, N — number of training objects.
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The dual formulation and numerical solution
of the disjoint empirical risk minimization problem

2ulal al<p) < . disi
| z q(y;,z, joint writing
YZ(M +a;,|a>p " lq(ywzj)—)m'”(al, 800,212y 1) of the empirical

o risk minimization
Z. _Za, iith, J=1...,N, Lagrange multipliers A ;; problem

n— number of features, N — number of training objects.

Theorem. The solution of the disjoint problem is completely defined by:

1) solution (A,,...,A,,) of the convex dual problem

(hyyeshy) = argmm{—Z{max{ ,[ZN:AJ.XJ.J—pz}}+ZN:{—inf(2iq(yj,z)+szﬂ},
] i1 i1 zeR Y

1 1 .
Z —17“1 =0, _2_ygsup(yj)—7‘j S_Z_YQinf(yj)’ J=1...,N;

Polynomial computational complexity in the number of raining objects N

o (ZhLexrEr) e
Z—l j J"(Z (7‘1 i T6; Jl))

Linear computational complexity in the number of features n

2) independent computing i =1,...,.n & =3
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Regularization path along the selectivity axis
The dual problem once again:

i) = argmm{_zl“{max{ ,(ixjx”j }} Z[ |nf(1yq(y,-,z)+szﬂ},

1 1
Z_]_;\'j_o __QSUp(yj)—}\'jS_Z_Yginf(yj)1jz ..... N,

(O’ (Z —1(7\‘1 it J Jl))2
Z—l j JH(ZJ_(KJ ji J J,))2>;VL

The selectlwty parameter 0 < < oo — the main hyperparameter of the dependence
estimation problem.

a =<
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Regularization path along the selectivity axis
The dual problem once again:

i) = argmm{_zl“{max{ ,(ixjx”j }} Z[ |nf(1yq(y,-,z)+szﬂ},

1 1
Z 7\‘ _O __gsup(yj)—}\'jS__ginf(yj)’.l: 1"'1N;

—1J

é.=<0’ (Z —1(7\ it J Jl))
| Z‘l J J"(ZJ— (KJXJ'+§JXJ')) 1

The selectlwty parameter 0 < < oo — the main hyperparameter of the dependence

estimation problem. If p =0, the criterions possess no selectivity property at all, and

all the estimated components of the direction vector remain active. On the contrary,
when the selectivity grows pu — oo, all the direction vector components become zero.

It is easy to find the maximal value of selectivity p, that completely suppresses all
the features.

e
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Regularization path along the selectivity axis
The dual problem once again:

i) = argmm{_zl“{max{ ,(ixjx”j }} Z[ |nf(1yq(y,-,z)+szﬂ},

1 1
> A, =0, ——gm(y,-)s%,-S——gmf(y,-),1= 1., N;

—1J

éi:<0’ (Z —1(7‘1 TRES ,.))
Z—l j JH(ZJ_(XJ ji J J,)) >u

It is enough to vary selectivity in the interval 0 <pu<p,.
The idea: To divide this interval into a number of subintervals in logarithmic scale
Mp=0 <My <o <py <Hg

e

Each next value p, will almost coincide with the previous one p,_,, and the iteration
process will converge at each step after one or two iterations.

The entire regularization path 0 <y <p, takes, as a rule, almost the same time as
solving the dual problem for a single selectivity value .
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Regularization path along the selectivity axis

An experimental result. Regression estimation problem in a set of stock market data
(Return-based analysis of an investment portfolio)

Number of observations N =240
Number of features (known returns of stock market indexes)
The sought-for regression coefficients n=650: capital sharing to be estimated

40

20

10

} 0D M}
10° << Iy 10° <p< L,

Number of active features Number of iterations at each step
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Conclusions

Under some quite lenient assumptions, the traditional formulation of the generalized
linear dependence estimation problem results in the convex problem of regularized
empirical risk minimization.

This problem inevitably has polynomial computational complexity in the number of
features, what is in crucial conflict with the assumption on the huge dimension of the

feature vectors.

We proposed an alternative disjoint formulation of the generalized linear dependence
estimation problem, which is not only of linear computational complexity in the
number of features, but also easily parallelizable.
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Thank you!

Questions?



