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Introduction Machine Learning Motivation

Machine Learning Motivation

Consider a machine learning problem with a vector of parameters y ∈ Rd and a
loss function L(A, y), where A is a training set of l samples, and each sample is a
vector of Rm. The dataset is divided into n parts Ai and placed on n different
machines.

L(A, y) =
n∑

i=1
L(Ai, y) −→ min

y∈Rd
(1)

ϕ(y) =
n∑

i=1
ϕi (y) −→ min

y∈Rd
(2)
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Introduction Time-Varying Network

Time-Varying Network

Time-varying network is represented by a sequence of graphs {Gk}∞k=1, where
every Gk = (V ,Ek) is a connected undirected graph.
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Distributed Optimization on Static Networks Communication Matrix

Communication Matrix

Definition
Let G = (V ,E ) be a connected undirected graph. Then its Laplacian is defined as

[W ]ij =


−1, if (i , j) ∈ E ,

deg(i), if i = j ,

0, otherwise

Basic properties :
W and

√
W are symmetric and positive semidefinite

Vector 1 is the unique (up to a scaling factor) eigenvector associated with
the eigenvalue λ = 0
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Distributed Optimization on Static Networks Communication Matrix

Reformulation via Communication Matrix
Problem

ϕ(y) =
n∑

i=1
ϕi (y) −→ min

y∈Rd
(3)

can be equivalently rewritten as
n∑

i=1
ϕi (yi ) −→ miny1=...=yn

yi∈Rd

(4)

or, using Laplacian properties,

Φ(Y ) =
n∑

i=1
ϕi (yi ) −→ min

Y
√

W =0
(5)

where we denote Y = [y1 . . . yn] ∈ Rd×n. This brings us to the minimization
problem

f (X ) = max
Y∈Rd×n

[
−〈X ,Y

√
W 〉 − Φ(Y )

]
−→ min

X∈Rd×n
(6)
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Distributed Optimization on Static Networks Communication Matrix

Reformulation via Communication Matrix
We define

Y (X ) = argmax
Y∈Rd×n

[
− 〈X ,Y

√
W 〉 − Φ(Y )

]
,

Z = −X
√
W ,

Ỹ (Z ) = argmax
Y∈Rd×n

[
〈Z ,Y 〉 − Φ(Y )

]
= argmax

Y∈Rd×n

[ n∑
i=1

(〈zi , yi〉 − ϕi (yi ))
]
,

Ỹ (Z ) =
[
ỹ1(z1), ..., ỹn(zn)

]
and it follows that

Ỹ (Z ) = Ỹ (−X
√
W ) = Y (X ).

Moreover, the gradient of this dual function is defined as

∇f (X ) = −Y (X )
√
W = −Ỹ (−X

√
W )
√
W = −Ỹ (Z )

√
W
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W = −Ỹ (Z )

√
W

Alexander Rogozin (Moscow Institute of Physics and Technology)An Accelerated Method for Decentralized Distributed Optimization on Time-Varying Networks11 October 2018 8 / 22



Distributed Optimization on Static Networks Distributed Gradient Descent

Distributed Gradient Descent
Specifically, a gradient descent algorithm on this dual function, would be

X k+1 = X k + αY (X k)
√
W

or equivalently

Z k+1 = Z k − αỸ (Z k)W ,

Note that each of the agents’ subproblems

ỹi (zi ) = argmax
y∈Rd

[〈yi , zi〉 − ϕi (yi )] (7)

can be computed locally.

Require: Each agent i ∈ V locally holds ϕi, zi and some iteration number K .
for k = 0, 1, 2, · · · ,K − 1 do
1. Solve subproblem in Eq. (7) and obtain ỹi (zk

i ).
2. Send ỹi (zk

i ) to every neighbor and receive ỹi (zk
i ) from every neighbor.

3. Take a gradient step.
end for
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Distributed Optimization on Static Networks Connection of graph and dual function properties

Connection of graph and dual function properties

Theorem

Let σmax(W ) be the largest eigenvalue and σ̃min(W ) be the least nonzero
eigenvalue of W TW = W 2, where W is the Laplacian of the communication
graph G = (V ,E ). Let Φ(Y ) be LΦ-smooth and µΦ-strongly convex w.r.t. ‖ · ‖F .
Then f (X ) = max

Y∈Rd×n

(
− 〈X

√
W ,Y 〉 − Φ(Y )

)
is strongly convex with constant

µf =
√
σ̃min(W )

LΦ
on the subspace (KerW )⊥ and smooth with constant

Lf =
√
σmax(W )
µΦ

on Rd×n.
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Algorithm and Results Time-Varying Setting

Time-Varying Setting

When the network topology changes, the Laplacian matrix of the graph changes
as well, which defines a sequence of graph Laplacians {Wk}∞k=1. As a result,
contrary to the fixed network setup, we work with a sequence of dual functions
fk(x), such that

fk(X ) = Φ∗(−X
√

Wk) = max
Y∈Rd×n

(
−
〈
X ,Y

√
Wk
〉
− Φ(Y )

)
. (8)

Assuming that, even though the network changes with time, the network remains
connected. Then, all Wk have the same nullspace :

Ker(Wk) = {y1 = ... = yn} = Ker(
√

Wk)

Since Φ(Y ) does not change, all fk(X ) have a common point of minimum and the
same value of minimum due to the strong duality.
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Algorithm and Results Distributed Nesterov Method

Distributed Nesterov Method
Consider fast gradient method

yk+1 = xk −
1
L∇fk(xk), (9a)

xk+1 =
(
1 +
√
κ− 1√
κ+ 1

)
yk+1 −

√
κ− 1√
κ+ 1yk , (9b)

with initial points y0 = x0 and κ = L
µ . Its distributed version is the following :

Require: Each agent i ∈ V locally holds ϕi and some iteration number N.
1: Choose z̃ i

0 = z i
0 for all i ∈ V

2: for k = 0, 1, 2, · · · ,N − 1 do
3: ỹi (zk

i ) = argmax
y∈Rd

[
〈zk

i , y〉 − ϕi (yi )
]

4: Send ỹi (zk
i ) to every neighbor and receive ỹj(zk

j ) from every neighbor.

5: z̃k+1
i = zk

i − 1
L

n∑
j=1

[Wk ]ij ỹj(zk
j )

6: zk+1
i =

(
1 +

√
κ−1√
κ+1

)
z̃k+1

i −
√
κ−1√
κ+1 z̃

k
i

7: end for
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Algorithm and Results Results

Distributed Nesterov Method

Definition
Introduce

θmax = sup
k≥0
{σmax(Wk)} <∞, (10a)

θmin = inf
k≥0
{σ̃min(Wk)} > 0. (10b)

Then every fk(X ) is µ-strongly convex on
(
Ker W

)⊥ and L-smooth on Rn, where
µ =

√
θmin
LΦ

, L =
√
θmax
µΦ

by Theorem 2.
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Algorithm and Results Results

Main Theorem

Theorem

Let Φ be a µΦ-strongly convex LΦ-smooth function and assume that there is a
sequence of undirected connected graphs {Gk} with no more than m changes at
the moments n1, ..., nm. Then, the sequence {zk

i } generated by the distributed
Nesterov method has the following property : for any N > nm it holds that

fN(ZN)− f ∗ 6 κm · L + µ

2 · R2

(1 + γ)N ,

where θmax and θmin are defined in (10), L =
√
θmax
µΦ

, µ =
√
θmin
LΦ

,
ZN = (zN

1 , · · · , zN
n ), R = ‖X0 − X∗‖2, κ = L

µ and γ = 1√
κ−1 .
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Algorithm and Results Results

Results

Corollary

Let Φ be a µΦ-strongly convex LΦ-smooth function. Denote L =
√
θmax
µΦ

, µ =
√
θmin
LΦ

,
where θmax, θmin are defined in (10). Assume that there is a sequence of graphs
{Gk} with no more than m changes. Then, for any ε > 0, the sequence {zk

i }
generated by the distributed Nesterov method has the following property : for any
k > N + 1, it holds that

fN(Zk)− f ∗ 6 ε,

where

N ≥
√
κ · log

(
κm L + µ

2
R2

ε

)
=
√
κΦ · χ(W ) ·

(
m log κ+ log

(
L + µ

2
R2

ε

))
,

and χ(W ) =
√

θmax
θmin

is the condition number of the sequence of graphs
Gk = (V ,Ek).
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Algorithm and Results Results

Optimality

Nesterov method reaches the optimal iteration complexity of Ω(
√
κ · χ(W ) log 1

ε )
for decentralized algorithms obtained in the paper Bach et al "Optimal Algorithms
for smooth and strongly convex distributed optimization in networks", arXiv :
1702.08704, 2017.
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Numerical Experiments

Numerical Experiments

The synthetic rigde regression problem is defined as

min
z∈Rm

1
2nl ‖b − Hz‖2

2 + 1
2c‖z‖

2
2. (11)

The regularization constant is set to c = 0.1. Thus, each agent has access to a
subset of points such that

bT = [ bT
1︸︷︷︸

Agent 1

| bT
2︸︷︷︸

Agent 2

| · · · | bT
n︸︷︷︸

Agent n

] and HT = [ HT
1︸︷︷︸

Agent 1

| HT
2︸︷︷︸

Agent 2

| · · · | HT
n︸︷︷︸

Agent n

],

where bi ∈ Rl and Hi ∈ Rl×m for each agent i ∈ V . Therefore, in this setup each
agent i ∈ V has a private local function

fi (xi ) ,
1
2nl ‖bi − Hixi‖2

2 + 1
2
c
n‖xi‖2

2.
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Numerical Experiments

Change every 10 iterations
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Numerical Experiments

Change every 1000 iterations
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Numerical Experiments

References

A. Rogozin, C. A. Uribe, A. Gasnikov, N. Malkovskiy, A. Necich Optimal
Distributed Optimization on Slowly Time-Varying Graphs arXiv :1805.06045

Alexander Rogozin (Moscow Institute of Physics and Technology)An Accelerated Method for Decentralized Distributed Optimization on Time-Varying Networks11 October 2018 22 / 22


	Introduction
	Machine Learning Motivation
	Time-Varying Network

	Distributed Optimization on Static Networks
	Communication Matrix
	Distributed Gradient Descent
	Connection of graph and dual function properties

	Algorithm and Results
	Time-Varying Setting
	Distributed Nesterov Method
	Results

	Numerical Experiments

