
Математическая модель данных микрочипов ДНК и методы оценки её параметров

Исполнитель: студентка группы 517 Когадеева М.С. Научный руководитель: д.ф-м.н. Воронцов К.В.

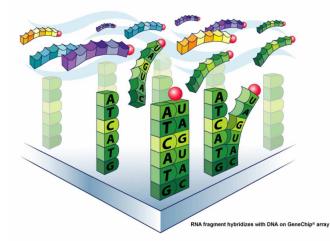
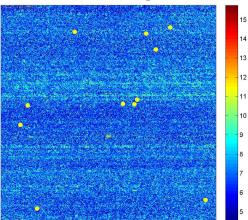

27 мая 2011

Схема устройства микрочипа класса Affymetrix GeneChip


Процесс гибридизации на чипе

RNA fragments with fluorescent tags from sample to be tested

Результат сканирования однокрасочного микрочипа

Chip Intensity, Log₂

Задачи анализа данных микрочипов ДНК

Основные задачи:

- По данным об интенсивности свечения проб восстановить исходные концентрации генов в образце
- Сравнить концентрации разных генов на одном чипе
- Сравнить концентрации одинаковых генов на разных чипах

Факторы, которые может учитывать модель интенсивности:

- погрешности измерения, техническая и биологическая вариация;
- неспецифическое взаимодействие кросс-гибридизация;
- нелинейность зависимости интенсивности от концентрации.

Природа шума:

- техническая вариация вариация лабораторных условий на этапе выделения материала, его обработки, окрашивания, гибридизации;
- погрешность измерения неточности работы сканера;
- биологическая вариация особенности исследуемых организмов и их состояний.

Кросс-гибридизация

Specificity level	Illustration of hybridization							
A. probe	∑							
B. spot	i							

Интенсивность как линейная функция концентрации

Зависимость интенсивности от концентрации генов:

$$I_i^t = d^t \sum_j A_{ij} C_j^t + b_i^t$$

 I_i^t — известная интенсивность i-й пробы на t-м чипе,

 $C_i^t \geqslant 0$ — концентрация j-го гена на t-м чипе.

 $A_{ij} \geqslant 0$ — коэффициент взаимодействия i-й пробы с j-м геном,

 d^t — параметр нормализации,

 b_i^t — фоновая поправка.

Стандартная задача: $(I,A) \rightarrow (C,d,b)$

— восстановление концентраций;

«Сверхзадача»: $(I) \rightarrow (A, C, d, b)$

— восстановление концентраций с учётом кросс-гибридизации;

Наша задача: $(I,C) \rightarrow (A,d,b)$

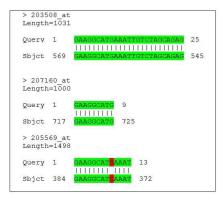
— калибровка матрицы A с учётом кросс-гибридизации.

Задача определения коэффициентов A_{ij}

Минимизация квадратичной невязки с L_1 -регуляризацией:

$$Q = \sum_{t} \sum_{i} (I_i^t(A) - Y_i^t)^2 \to \min_{A},$$
$$\sum_{i,j} |A_{ij}| \le \tau,$$

 $I_i^t(A)$ — модельная интенсивность i-й пробы на t-м чипе, Y_i^t — реальная интенсивность i-й пробы на t-м чипе, $A=(A_{ij})$ — коэффициенты взаимодействия i-й пробы с j-м геном, au — параметр регуляризации.


Цель регуляризации: обнулить все коэффициенты, не являющиеся необходимыми для объяснения наблюдаемых интенсивностей.

Предполагается, что коэффициенты, которые останутся ненулевыми, обусловлены только гибридизацией.

Определения коэффициентов A_{ij} путём выравнивания

Матрица A коэффициентов взаимодействия может быть задана априорно из биохимических соображений.

Алгоритм BLASTN оценивает длину участка пересечения и процент схожести участков пробы и гена.

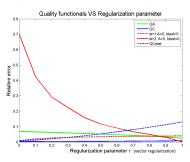
Описание эксперимента

14 образцов, в которых известны концентрации 14 генов. Для каждого образца приготовлены 3 чипа. Итого $14 \times 3 = 42$ чипа.

0 10	1 4 1								1 9	40		40	40	
Group ID		- 2	3	4	5	6	- /	8	9	10	11	12	13	14
Gene ID	203508_at 204563_at 204513_s_at	204205_at 204959_at 207655_s_at	204836_at 205291_at 209795_at	207777_s_at 204912_at 205569_at	207160_at 205692_s_at 212827_at	209606_at 205267_at 204417_at	205398_s_at 209734_at 209354_at	206060_s_at 205790_at 200665_s_at	207641_at 207540_s_at 204430_s_at	203471_s_at 204951_at 207968_s_at	AFFX-r2- TagA_at AFFX-r2- TagB_at	AFFX-r2- TagD_at AFFX-r2- TagE_at	AFFX-r2- TagG_at AFFX-r2- TanH at	AFFX-LysX- 3_at AFFX-PheX- 3_at
EXP 1	0	0,125	0,25	0,5	1	2	4	8	16	32	64	128	256	512
EXP 2	0,125	0,25	0,5	1	2	4	8	16	32	64	128	256	512	0
EXP 3	0,25	0,5	1	2	4	8	16	32	64	128	256	512	0	0,125
EXP 4	0,5	1	2	4	8	16	32	64	128	256	512	0	0,125	0,25
EXP 5	1	2	4	8	16	32	64	128	256	512	0	0,125	0,25	0,5
EXP 6	2	4	8	16	32	64	128	256	512	0	0,125	0,25	0,5	1
EXP 7	4	8	16	32	64	128	256	512	0	0,125	0,25	0,5	1	2
EXP 8	8	16	32	64	128	256	512	0	0,125	0,25	0,5	1	2	- 4
EXP 9	16	32	64	128	256	512	0	0,125	0,25	0,5	1	2	4	8
EXP 10	32	64	128	256	512	0	0,125	0,25	0,5	1	2	4	8	16
EXP 11	64	128	256	512	0	0,125	0,25	0,5	1	2	4	8	16	32
EXP 12	128	256	512	0	0,125	0,25	0,5	1	2	4	8	16	32	64
EXP 13	256	512	0	0,125	0,25	0,5	1	2	4	8	16	32	64	128
EXP 14	512	0	0,125	0,25	0,5	- 1	2	4	8	16	32	64	128	256

Известны концентрации C_i^t и интенсивности I_i^t .

Требуется восстановить коэффициенты взаимодействия A_{ij} .


Качество и непротиворечивость модели

Критерии качества модели:

QC(real) — относительная ошибка определения концентрации, QA(blast) — относительное расхождение с матрицей BLASTN.

Критерии непротиворечивости по техническим репликатам:

QA — относительное расхождение коэффициентов моделей, QC — относительное расхождение концентраций.

Эффект насыщения в модели интенсивности проб

Зависимость интенсивности от концентрации генов с учетом насыщения:

$$I_{i}^{t} = d^{t} \left(\frac{\alpha_{i} C_{i_{0}}^{t}}{1 + \beta_{i} C_{i_{0}}^{t}} + \sum_{j, j \neq i_{0}} A_{ij} C_{j}^{t} + \gamma_{i} \right) + b_{i}^{t}$$

матрица A восстановлена в ходе минимизации квадратичной невязки с ограничениями, накладываемыми алгоритмом выравнивания BLASTN,

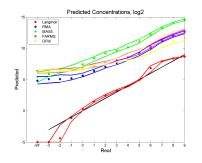
 α_i , β_i — параметры насыщения,

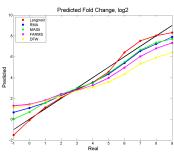
 γ_i — параметр неучтённой кросс-гибридизации,

 i_0 — номер специфического гена для пробы i.

Наша задача: $(I, A, d, b) \rightarrow (C)$

— восстановление матрицы концентраций с помощью построенной матрицы A с учётом насыщения и кросс-гибридизации.


Сравнение с существующими алгоритмами


MAS5, DFCM: взвешенное среднее интенсивностей соответствующих гену проб

RMA: медиана интенсивностей соответствующих гену проб

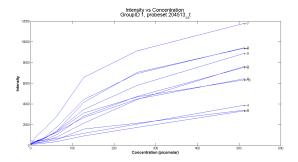
FARMS: оценка параметров нормального распределения

Комбинированная модель: использование матрицы взаимодействий А и учёт нелинейной зависимости

Результаты, выносимые на защиту

- Предложена модель данных микрочипов ДНК, учитывающая эффекты кросс-гибридизации и нелинейный характер зависимости интенсивности от концентрации генов
- Исследовано влияние регуляризации на точность идентификации параметров модели
- Экспериментально показано, что предложенная модель позволяет восстанавливать относительные концентрации генов не хуже, а абсолютные значения – существенно лучше стандартных методов

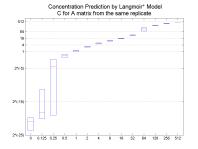
Постановка задачи Математическая модель данных микрочипа Обработка экспериментальных данных Восстановление исходных концентраций генов

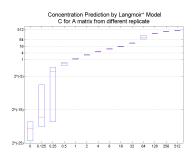

и Модель интенсивности, учитывающая эффекты насыщения и кро Качество восстановления концентраций Выводы

Эффект насыщения

Наиболее распространённая модель - модель Ленгмюра

$$I = \frac{\alpha C}{K + C} + b,$$


где α и K — параметры насыщения, b — фоновая поправка.



Критерии качества модели

Восстановление концентраций по матрицам взаимодействий A, полученных для разных репликатов путем минимизации функционала

$$Q = \sum_{t} \sum_{i} (I_i^t(C) - Y_i^t)^2 \to \min_C, \qquad C \ge 0$$

Функционалы качества

Критерии качества модели:

QC(real)

$$QC^{real} = \frac{1}{3} \sum_{t} \frac{\sum_{ij} (C_{ij} - C_{ij}^t)}{\sum_{ij} (\tilde{C}_{ij} + C_{ij}^t)}$$

— относительная ошибка определения концентрации,где $t_1 < t_2$ - номер репликата, $t_1, t_2 \in \{1, 2, 3\}$.

 $ilde{C}$ — матрица истинных концентраций.

QA(blast)

$$QA_{II}^{blast} = \frac{1}{3} \sum_{t} \frac{\sum_{ij} [A_{ij}^{t} > 0] [A_{ij}^{blast} = 0]}{|A^{blast}|}.$$

— относительное расхождение с матрицей BLASTN.

Критерии непротиворечивости по техническим репликатам

QA

$$QA = \frac{1}{3} \sum_{t_1, t_2} \frac{\sum_{ij} (A_{ij}^{t_1} - A_{ij}^{t_2})}{\sum_{ij} (A_{ij}^{t_1} + A_{ij}^{t_2})}$$

— относительное расхождение коэффициентов моделей, где $t_1 < t_2$ - номер репликата, $t_1, t_2 \in \{1, 2, 3\}.$ QC

$$QC = \frac{1}{3} \sum_{t_1, t_2} \frac{\sum_{ij} (C_{ij}^{t_1} - C_{ij}^{t_2})}{\sum_{ij} (C_{ij}^{t_1} + C_{ij}^{t_2})}$$

— относительное расхождение концентраций.