Локально-аппроксимирующие модели в анализе сигналов головного мозга

Маркин Валерий Олегович

Московский физико-технический институт Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. В.В. Стрижов

Москва, 2020

По записям электрических импульсов головного мозга требуется восстановить траекторию движения руки. Гипотеза о связи движения волнового фронта в пространстве с траекторией кисти.

Проблема

Исходное признаковое пространство избыточно, признаки сильно коррелированы.

Предлагаемое решение

Построить локальную модель, учитывающую пространственную структуру сигнала. Использовать параметры модели как новое признаковое описание.

Центральная гипотеза

Траектория движения кисти определяется движением волнового фронта (перемещением зоны активности по поверхности моторной зоны коры головного мозга).

- Chao Z.C., Nagasaka Y., Fujii N. (2010). Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. // Frontiers in Neuroengineering.
- Motrenko A.P., Strijov V.V. *Multi-way feature selection for ecog-based brain-computer84interface.* // Expert Systems with Applications.
- Isachenko R.V., Strijov V.V. Quadratic Programming Optimization with Feature Selection for Non-linear Models// Lobachevskii Journal of Mathematics.

Декодируемые сигналы электрокортикограммы

- Сигналы $\mathbf{s}(t) \in \mathbb{R}^{N_{\mathsf{ch}}}$. N_{ch} число электродов
- $m{\bullet}$ Координаты электродов $m{\mathsf{Z}} = \left\{ (m{\mathsf{z}}_j \in \mathbb{R}^2, j \in \{1 \dots, N_{ch}\}
 ight\}$
- Положение кисти в пространстве $\mathbf{y}(t) \in \mathbb{R}^3$

Chao ZC, Nagasaka Y, Fujii N (2010). "Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys."Frontiers in Neuroengineering 3:3.

Преобразование электрокортикограммы

Процесс построения частотно-временного описания $\underline{\mathbf{X}}_m$ использует вейвлет-преобразование.

Вейвлет-преобразование сигнала s(t) с вейвлетом $\psi(t)$:

$$\psi_{m,n} = a_0^{-m/2} \psi\left(\frac{t - nb_0}{a_0^m}\right)$$
$$T_{m,n} = \int_{-\infty}^{\infty} x(t) \psi$$

 $-\infty$

Вейвлет Морле

Постановка задачи локальной аппроксимации

Основная идея: для описания каждого момента времени учесть его предысторию, пространственные и частотные свойства сигнала.

 $\begin{array}{l} \textbf{Схема преобразований} \\ \textbf{s}(t) \in \mathbb{R}^{N_{\mathsf{ch}}} \xrightarrow{\mathsf{wavelet}} \underline{\textbf{X}}_{m} \in \mathbb{R}^{N_{\mathsf{ch}} \times T \times F} \xrightarrow{\mathsf{local}} \underline{\boldsymbol{\Theta}}_{m} \in \mathbb{R}^{N_{\mathsf{f}} \times T \times F} \end{array}$

Метод локальной аппроксимации состоит в построении признакового описания момента времени на основе решения задачи (1).

Локальная модель временного ряда

Локальной моделью $\mathbf{x}(t)$ называется параметрическое или непараметрическое отображение интервала $[t-\Delta t,t]$

$$\mathbf{g}(\gamma):\mathbf{x}[t-\Delta t,t]\longrightarrow \hat{\mathbf{x}}[t-\Delta t,t]$$

где γ - параметры локальной модели, которые находятся решением оптимизационной задачи.

$$\|\mathbf{x} - \mathbf{g}(\hat{\mathbf{x}}, \gamma)\| \longrightarrow \min_{\gamma}.$$
 (1)

Заданы координаты каждого электрода на плоскости $Z = \{ (\mathbf{z}_j \in \mathbb{R}^2, j \in \{1..., N_{ch}\} \}.$ Локальная модель

$$g(\boldsymbol{\xi}, \boldsymbol{A}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \boldsymbol{A} \exp\left(-\frac{1}{2}(\boldsymbol{\xi} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\xi} - \boldsymbol{\mu})\right).$$

Решением оптимизационной задачи $\sum_{i=1}^{N_{ch}} \|\mathbf{x}_i - g(\mathbf{z}_j, A, \boldsymbol{\mu}, \boldsymbol{\Sigma})\| \longrightarrow \min_{\boldsymbol{\gamma} = [A, \boldsymbol{\mu}, \boldsymbol{\Sigma}]}$ будет

$$\mu = \frac{\sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{z}_{j}}{\sum_{j=1}^{n} \mathbf{x}_{j}},$$
$$\mathbf{\Sigma} = \frac{1}{n} \mathbf{Z}^{\mathsf{T}} \text{diag}(\mathbf{x}) \mathbf{Z}$$

В качестве новых признаков для описания сигнала используются параметры нормального распределения μ , Σ , а так же их производные по времени.

Модель на основе функций радиального базиса (альтернативная модель)

Помимо координат электродов выбраны дополнительно n_{basis} точек на плоскости $\hat{\mathbf{Z}} \in \mathbb{R}^{n_{\text{basis}} \times 2}$. Локальная модель имеет вид

$$g(oldsymbol{\xi},oldsymbol{\gamma}) = \sum_{j=1}^{n_{ extsf{basis}}} \gamma_j \expig(-\|oldsymbol{\xi}-\hat{oldsymbol{z}}_j\|ig).$$

Вектор весов базисных компонент γ находится решением оптимизационной задачи:

$$\sum_{i=1}^n \|\mathbf{x}_i - g(\mathbf{z}_i, \gamma)\|_2^2 \longrightarrow \min_{\gamma}.$$

Решение задачи декодирования методом проекции в скрытое подпространство

Размерность признакового пространства $N_f \times T \times F \approx 1000$, причем признаки сильно коррелированы. Используется, PLS.

Предполагается линейная зависимость признаков и целевой переменной

$$\mathbf{y}_{1 \times r} = \mathbf{x}_{1 \times n} \cdot \mathbf{\Theta}^* + \mathbf{\varepsilon}_{1 \times r},$$
$$\mathbf{\Theta}^* = \arg \max_{\mathbf{\Theta}} \|\mathbf{Y} - \mathbf{X}\mathbf{\Theta}\|_2.$$

Алгоритм PLS находит матрицы $\mathbf{T}, \mathbf{U} \in \mathbb{R}^{m \times l}$, описывающую исходные матрицы \mathbf{X} и \mathbf{Y} . Метод позволяет учитывать зависимость исходной и целевой переменных.

$$\mathbf{X}_{m \times n} = \mathbf{T} \cdot \mathbf{P}_{l \times n} + \mathbf{F}_{m \times n} = \sum_{k=1}^{r} \mathbf{t}_{k} \cdot \mathbf{p}_{k} + \mathbf{F}_{m \times n}, \qquad \mathbf{X} \longrightarrow \mathbf{P}_{l \times n}$$

$$\mathbf{Y}_{m \times r} = \mathbf{U}_{m \times l} \cdot \mathbf{Q}_{l \times r} + \mathbf{E}_{m \times r} = \sum_{k=1}^{l} \mathbf{u}_{k} \cdot \mathbf{q}_{k} + \mathbf{E}_{m \times r}.$$

$$\mathbf{U}, \mathbf{T}$$

Isachenko R.V., Strijov V.V. Quadratic Programming Optimization with Feature Selection for Non-linear Models // Lobachevskii Journal of Mathematics, 2018, 39(9) : 1179-1187.

Коэффициент корреляции между двумя временными рядами:

$$r(s(t), \hat{s}(t)) = rac{1}{T} \sum_{j=1}^{T} rac{(s(t_j) - \mu_s)(\hat{s}(t_j) - \mu_{\hat{s}})}{\sigma_s, \sigma_{\hat{s}}},$$

где

$$\mu_s = rac{1}{T} \sum_{j=1} T, \quad \sigma_s^2 = rac{1}{T-1} \sum_{j=1} T(s-\mu_s)^2.$$

Для оценки качества локальной аппроксимации используем $r(x_j(t), \hat{x}_j(t))$ — корреляцию истинного и восстановленного сигналов на каждом электроде.

Для оценки качества предсказания $r(y_j(t), \hat{y}_j(t))$ — корреляцию истинной и предсказанной траектории руки.

- Требуется восстановить координату движения конечности по сигналу электрокортикограммы.
- 5 временных рядов по 20 минут, первые 15 минут обучение, остальные 5 минут — тест.
- Критерий качества: коэффициент корреляции между предсказанной траекторией и истинной.

Зависимость предсказанной и истинной траекторий от времени

Эксперимент показал, что для всех моделей $\bar{\mathbf{r}} \approx 0.8$ что говорит о способности используемой пространственной локальной модели адекватно аппроксимировать сигнал. Белые точки на рисунке соответствуют лучшему качеству аппроксимации в данной точке.

Корреляция исходного и восстановленного ряда на разных электродах

Из рисунков следует, что перемещение волнового фронта наилучшим образом видны после применения вейвлет-преобразования.

Проведено сравнение результатов работы алгоритма PLS на данных содержащих только частотно-временное описание сигнала, \underline{X}_m , и данных, дополнительно учитывающих пространственную структуру, $\underline{\Theta}_m$.

Метод предложенный в работе меньше переобучается и дает лучшие результаты.

- Предложен метод, учитывающий пространственную структуру сигнала в задаче анализа ECoG.
- Разработанный подход понижает размерность задачи в 3 6 раз.
- Проведен численный эксперимент, показывающий эффективность предложенного решения.
- Подтверждена гипотеза об избыточности признаков и необходимости понижения размерности.