Автоматизация научных исследований в машинном обучении

Вадим Викторович Стрижов

Московский физико-технический институт

Осенний семестр 2018

- Customer demand sales forecasting as the example of error function statement.
- 2 Periodical time series: the one-model autoregressive problem.
- Son-periodical time series: the mixed-model autoregressive problem.
- **4** Some problems of regression and classification.

The goal is to state the problem of the time series event forecasting as the auto-regressive problem.

The set of retailers problems:

- custom inventory,
- calculation of optimal insurance stocks,
- consumer demand forecasting.

There given:

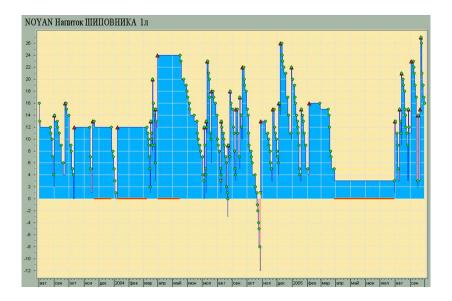
- time-scale,
- historical time series,
- additional time series;

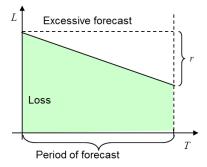
the quality of forecasting:

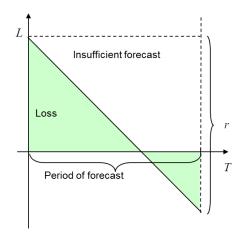
• minimum loss of money;

we must:

• forecast the time series.



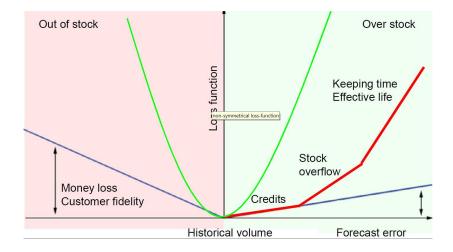




reflects the sales process and depends on the basis of the features of a particular trading network

- Symmetric quadratic function
- Module function
- Asymmetric function

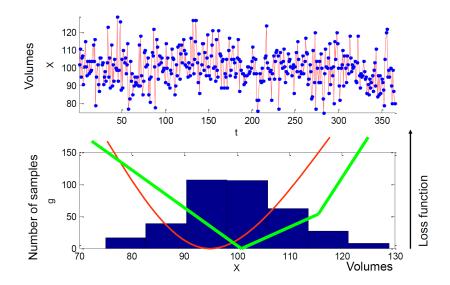
Asymmetric loss function



Noisy time series forecasting

- There is a historical time series of the volume off-takes (i.e. foodstuff).
- Let the time series be homoscedastic (its variance is the time-constant).
- Using the loss function one must forecast the next sample.

The time series and the histogram



Let there be given:

the historgam
$$H = \{X_i, g_i\}, i = 1, \dots, m;$$

the loss function L = L(Z, X);

for example, L = |Z - X| or $L = (Z - X)^2$. The problem:

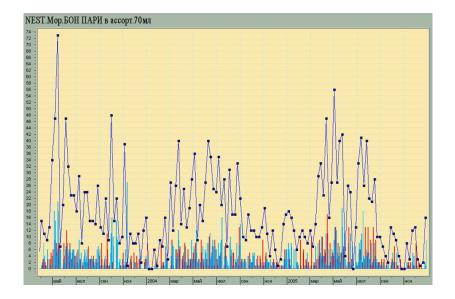
For given *H* and *L*, one must find the optimal forecast value \tilde{X} . **Solution:**

$$ilde{X} = \arg\min_{Z \in \{X_1, \dots, X_m\}} \sum_{i=1}^m g_i L(Z, X_i).$$

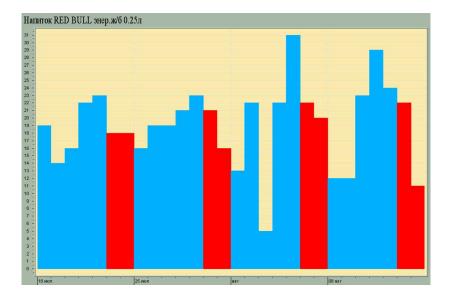
Result:

 \tilde{X} is the optimal forecast of the time series.

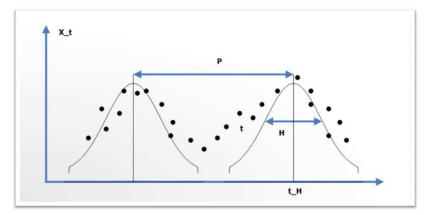
- There is a trend total increase or decrease in sales volume,
- periodic component week and year cycles,
- aperiodic component promotional actions and holidays,
- life cycle of goods mobile phones.



Week seasonality

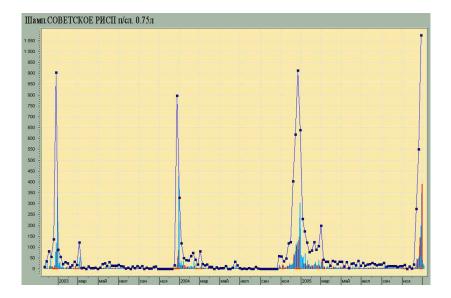


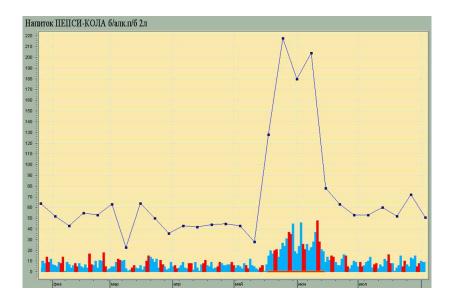
How to create sample set of periodical series



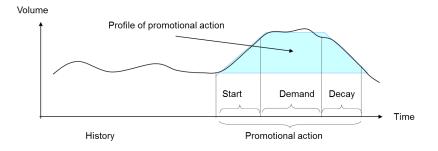
Weighting function includes neighborhood points to the sample set.

Holidays and week-ends





Promotional profile extraction



- Hypothesis: the shape of the profile (excluding the profile parameters) does not depend of duration of the action.
- Problem: to forecast the customer demand during the promotional action.

On forecasting one must consider:

- trend of time series,
- periodical components of time series,
- aperiodical components,
- as well as the fact that the time series contain
 - empty values there is no information about the stock,
 - empty values new position on the stock,
 - outliers and errors.

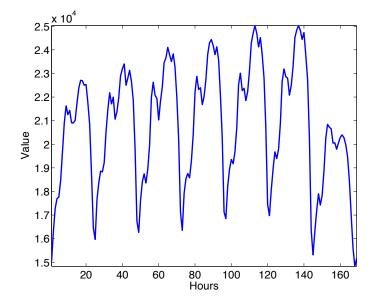
The time series:

- energy price,
- consumption,
- daytime,
- temperature,
- humidity,
- wind force,
- holiday schedule.

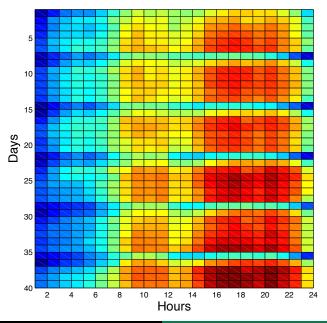
Periods:

- one year seasons (temperature, daytime),
- one week,
- one day (working day, week-end),
- a holiday,
- aperiodic events.

Source time series, one week

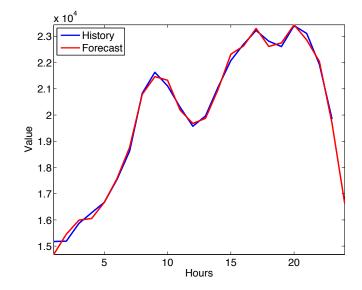


The autoregressive matrix, five week-ends



Vadim Strijov Problem Statements in Time Series Forecasting 25 / 47

The one-day forecast, an example



Assume we have hourly data on price/consumption for three years. Then the matrix $X^*_{(m+1)\times(n+1)}$ is

156 \times 168, in details: 52w \cdot 3y \times 24h \cdot 7d;

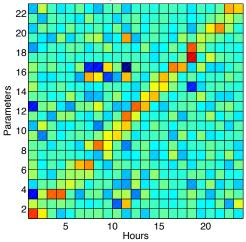
- for 6 time series the matrix X is 156×1008 ,
- for 4 primitive functions it is 156×4032 ,

m << *n*.

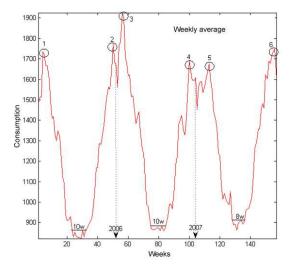
The autoregressive matrix could be considered as *ill-conditioned* and *multi-correlated*. The model selection procedure is required.

How many parameters must be used to forecast?

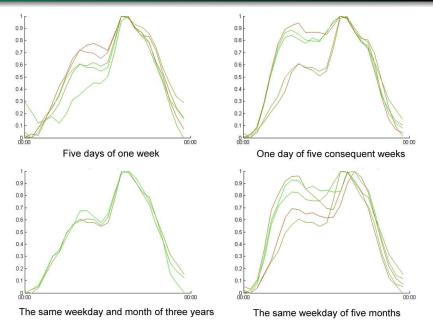
The color shows the value of a parameter for each hour.

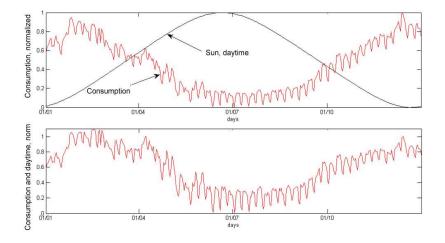


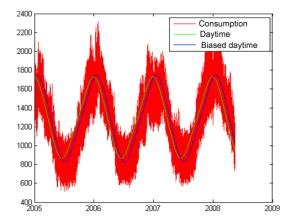
Estimate parameters $\mathbf{w}(\tau) = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$, then calculate the sample $s(\tau) = \mathbf{w}^{\mathsf{T}}(\tau)\mathbf{x}_{m+1}$ for each τ of the next (m+1-th) period.

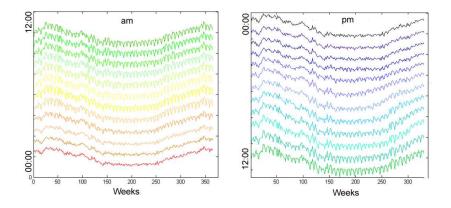


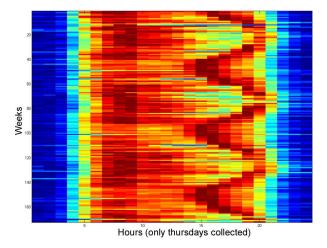
Similarity of daily consumption



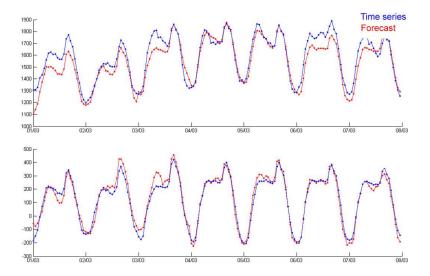


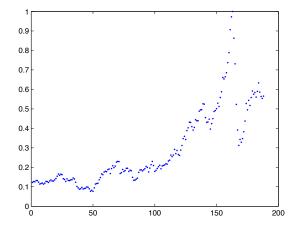


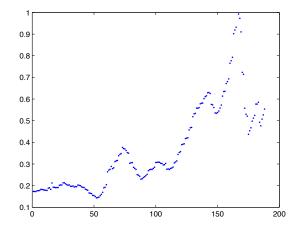


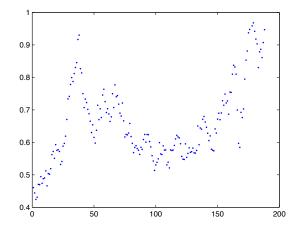


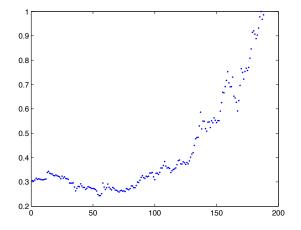
Energy consumption one-week forecast











Event forecasting; One must forecast $a_{1,T+1} \in \mathcal{M}$.

There are N time series of length T (denote the element $a_{n,t} \in \mathcal{M}$) as the matrix

$$A = \begin{cases} a_{1,1} & a_{1,2} & \cdots & a_{1,T-1} & a_{1,T} & a_{1,T+1} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,T-1} & a_{2,T} & a_{2,T+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{N,1} & a_{N,2} & \cdots & a_{N,T-1} & a_{N,T} & a_{N,T+1} \end{cases}$$

Denote Δ the time-lag and for the time series
 $[a_{1,t}], t \in \{\Delta + 1, \dots, T\}$ form the matrix
$$A_{t} = \begin{cases} a_{1,t-\Delta} & a_{1,t-\Delta+1} & \cdots & a_{1,t-2} & a_{1,t-1} \\ a_{2,t-\Delta} & a_{2,t-\Delta+1} & \cdots & a_{2,t-2} & a_{2,t-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{N,t-\Delta} & a_{N,t-\Delta+1} & \cdots & a_{N,t-2} & a_{N,t-1} \end{cases}$$

and vectorize it to obtain the sample \mathbf{x}_t

$$\mathbf{x}_t = [a_{1,t-\Delta}, a_{2,t-\Delta}, \dots, a_{N,t-\Delta}, a_{1,t-\Delta+1}, \dots, a_{N,t-1}]^T.$$

Set $y_t \equiv a_{1,t}$.

Event forecasting is a classification problem

Introduce the data set $D = (X, \mathbf{y})$, where

$$X = \begin{bmatrix} \mathbf{x}_1^{\mathsf{T}} \\ \mathbf{x}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{x}_{T-\Delta}^{\mathsf{T}} \end{bmatrix} \text{ and } \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{T-\Delta} \end{bmatrix}$$

Treat this classification problem as the logistic regression

$$\mathbf{f}(\mathbf{w}, X) = rac{1}{1 + \exp(-X\mathbf{w})}
ightarrow \mathbf{y}$$

or as another classification problem. The error function

$$\mathcal{S}(\mathbf{w}) = \sum_{i \in \mathcal{I}} y_i \ln f(\mathbf{w}, \mathbf{x}_i) + (1 - y_i) \ln (1 - f(\mathbf{w}, \mathbf{x}_i))$$

.